MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeord Unicode version

Theorem oeord 6582
Description: Ordering property of ordinal exponentiation. Corollary 8.34 of [TakeutiZaring] p. 68 and its converse. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  <->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )

Proof of Theorem oeord
StepHypRef Expression
1 oeordi 6581 . . 3  |-  ( ( B  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( A  e.  B  ->  ( C  ^o  A
)  e.  ( C  ^o  B ) ) )
213adant1 975 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  ->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
3 oveq2 5828 . . . . . 6  |-  ( A  =  B  ->  ( C  ^o  A )  =  ( C  ^o  B
) )
43a1i 12 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  =  B  ->  ( C  ^o  A )  =  ( C  ^o  B ) ) )
5 oeordi 6581 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( B  e.  A  ->  ( C  ^o  B
)  e.  ( C  ^o  A ) ) )
653adant2 976 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( B  e.  A  ->  ( C  ^o  B )  e.  ( C  ^o  A ) ) )
74, 6orim12d 813 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  (
( A  =  B  \/  B  e.  A
)  ->  ( ( C  ^o  A )  =  ( C  ^o  B
)  \/  ( C  ^o  B )  e.  ( C  ^o  A
) ) ) )
87con3d 127 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( -.  ( ( C  ^o  A )  =  ( C  ^o  B )  \/  ( C  ^o  B )  e.  ( C  ^o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A )
) )
9 eldifi 3300 . . . . . 6  |-  ( C  e.  ( On  \  2o )  ->  C  e.  On )
1093ad2ant3 980 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  C  e.  On )
11 simp1 957 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  A  e.  On )
12 oecl 6532 . . . . 5  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  On )
1310, 11, 12syl2anc 644 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  A )  e.  On )
14 simp2 958 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  B  e.  On )
15 oecl 6532 . . . . 5  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  ^o  B
)  e.  On )
1610, 14, 15syl2anc 644 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  B )  e.  On )
17 eloni 4402 . . . . 5  |-  ( ( C  ^o  A )  e.  On  ->  Ord  ( C  ^o  A ) )
18 eloni 4402 . . . . 5  |-  ( ( C  ^o  B )  e.  On  ->  Ord  ( C  ^o  B ) )
19 ordtri2 4427 . . . . 5  |-  ( ( Ord  ( C  ^o  A )  /\  Ord  ( C  ^o  B ) )  ->  ( ( C  ^o  A )  e.  ( C  ^o  B
)  <->  -.  ( ( C  ^o  A )  =  ( C  ^o  B
)  \/  ( C  ^o  B )  e.  ( C  ^o  A
) ) ) )
2017, 18, 19syl2an 465 . . . 4  |-  ( ( ( C  ^o  A
)  e.  On  /\  ( C  ^o  B )  e.  On )  -> 
( ( C  ^o  A )  e.  ( C  ^o  B )  <->  -.  ( ( C  ^o  A )  =  ( C  ^o  B )  \/  ( C  ^o  B )  e.  ( C  ^o  A ) ) ) )
2113, 16, 20syl2anc 644 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  (
( C  ^o  A
)  e.  ( C  ^o  B )  <->  -.  (
( C  ^o  A
)  =  ( C  ^o  B )  \/  ( C  ^o  B
)  e.  ( C  ^o  A ) ) ) )
22 eloni 4402 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
23 eloni 4402 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
24 ordtri2 4427 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
2522, 23, 24syl2an 465 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
26253adant3 977 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
278, 21, 263imtr4d 261 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  (
( C  ^o  A
)  e.  ( C  ^o  B )  ->  A  e.  B )
)
282, 27impbid 185 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  ( On  \  2o ) )  ->  ( A  e.  B  <->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ w3a 936    = wceq 1624    e. wcel 1685    \ cdif 3151   Ord word 4391   Oncon0 4392  (class class class)co 5820   2oc2o 6469    ^o coe 6474
This theorem is referenced by:  oeword  6584  oeeui  6596  omabs  6641  cantnflem3  7389
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-oexp 6481
  Copyright terms: Public domain W3C validator