MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordi Unicode version

Theorem oeordi 6821
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeordi  |-  ( ( B  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( A  e.  B  ->  ( C  ^o  A
)  e.  ( C  ^o  B ) ) )

Proof of Theorem oeordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6080 . . . . 5  |-  ( x  =  suc  A  -> 
( C  ^o  x
)  =  ( C  ^o  suc  A ) )
21eleq2d 2502 . . . 4  |-  ( x  =  suc  A  -> 
( ( C  ^o  A )  e.  ( C  ^o  x )  <-> 
( C  ^o  A
)  e.  ( C  ^o  suc  A ) ) )
32imbi2d 308 . . 3  |-  ( x  =  suc  A  -> 
( ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A
) ) ) )
4 oveq2 6080 . . . . 5  |-  ( x  =  y  ->  ( C  ^o  x )  =  ( C  ^o  y
) )
54eleq2d 2502 . . . 4  |-  ( x  =  y  ->  (
( C  ^o  A
)  e.  ( C  ^o  x )  <->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )
65imbi2d 308 . . 3  |-  ( x  =  y  ->  (
( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) ) )
7 oveq2 6080 . . . . 5  |-  ( x  =  suc  y  -> 
( C  ^o  x
)  =  ( C  ^o  suc  y ) )
87eleq2d 2502 . . . 4  |-  ( x  =  suc  y  -> 
( ( C  ^o  A )  e.  ( C  ^o  x )  <-> 
( C  ^o  A
)  e.  ( C  ^o  suc  y ) ) )
98imbi2d 308 . . 3  |-  ( x  =  suc  y  -> 
( ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) ) )
10 oveq2 6080 . . . . 5  |-  ( x  =  B  ->  ( C  ^o  x )  =  ( C  ^o  B
) )
1110eleq2d 2502 . . . 4  |-  ( x  =  B  ->  (
( C  ^o  A
)  e.  ( C  ^o  x )  <->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
1211imbi2d 308 . . 3  |-  ( x  =  B  ->  (
( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) )  <->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  B ) ) ) )
13 eldifi 3461 . . . . . . . 8  |-  ( C  e.  ( On  \  2o )  ->  C  e.  On )
14 oecl 6772 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  On )
1513, 14sylan 458 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  On )
16 om1 6776 . . . . . . 7  |-  ( ( C  ^o  A )  e.  On  ->  (
( C  ^o  A
)  .o  1o )  =  ( C  ^o  A ) )
1715, 16syl 16 . . . . . 6  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( ( C  ^o  A )  .o  1o )  =  ( C  ^o  A ) )
18 ondif2 6737 . . . . . . . . 9  |-  ( C  e.  ( On  \  2o )  <->  ( C  e.  On  /\  1o  e.  C ) )
1918simprbi 451 . . . . . . . 8  |-  ( C  e.  ( On  \  2o )  ->  1o  e.  C )
2019adantr 452 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  1o  e.  C )
2113adantr 452 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  C  e.  On )
22 simpr 448 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  A  e.  On )
23 dif20el 6740 . . . . . . . . . 10  |-  ( C  e.  ( On  \  2o )  ->  (/)  e.  C
)
2423adantr 452 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  -> 
(/)  e.  C )
25 oen0 6820 . . . . . . . . 9  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  (/)  e.  ( C  ^o  A ) )
2621, 22, 24, 25syl21anc 1183 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  -> 
(/)  e.  ( C  ^o  A ) )
27 omordi 6800 . . . . . . . 8  |-  ( ( ( C  e.  On  /\  ( C  ^o  A
)  e.  On )  /\  (/)  e.  ( C  ^o  A ) )  ->  ( 1o  e.  C  ->  ( ( C  ^o  A )  .o  1o )  e.  ( ( C  ^o  A
)  .o  C ) ) )
2821, 15, 26, 27syl21anc 1183 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( 1o  e.  C  ->  ( ( C  ^o  A )  .o  1o )  e.  ( ( C  ^o  A )  .o  C ) ) )
2920, 28mpd 15 . . . . . 6  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( ( C  ^o  A )  .o  1o )  e.  ( ( C  ^o  A )  .o  C ) )
3017, 29eqeltrrd 2510 . . . . 5  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  ( ( C  ^o  A )  .o  C ) )
31 oesuc 6762 . . . . . 6  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  ^o  suc  A )  =  ( ( C  ^o  A )  .o  C ) )
3213, 31sylan 458 . . . . 5  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  suc  A )  =  ( ( C  ^o  A )  .o  C ) )
3330, 32eleqtrrd 2512 . . . 4  |-  ( ( C  e.  ( On 
\  2o )  /\  A  e.  On )  ->  ( C  ^o  A
)  e.  ( C  ^o  suc  A ) )
3433expcom 425 . . 3  |-  ( A  e.  On  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) )
35 oecl 6772 . . . . . . . . . . 11  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  On )
3613, 35sylan 458 . . . . . . . . . 10  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  On )
37 om1 6776 . . . . . . . . . 10  |-  ( ( C  ^o  y )  e.  On  ->  (
( C  ^o  y
)  .o  1o )  =  ( C  ^o  y ) )
3836, 37syl 16 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( C  ^o  y )  .o  1o )  =  ( C  ^o  y ) )
3919adantr 452 . . . . . . . . . 10  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  1o  e.  C )
4013adantr 452 . . . . . . . . . . 11  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  C  e.  On )
41 simpr 448 . . . . . . . . . . . 12  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  y  e.  On )
4223adantr 452 . . . . . . . . . . . 12  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  -> 
(/)  e.  C )
43 oen0 6820 . . . . . . . . . . . 12  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  (/)  e.  C )  ->  (/)  e.  ( C  ^o  y ) )
4440, 41, 42, 43syl21anc 1183 . . . . . . . . . . 11  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  -> 
(/)  e.  ( C  ^o  y ) )
45 omordi 6800 . . . . . . . . . . 11  |-  ( ( ( C  e.  On  /\  ( C  ^o  y
)  e.  On )  /\  (/)  e.  ( C  ^o  y ) )  ->  ( 1o  e.  C  ->  ( ( C  ^o  y )  .o  1o )  e.  ( ( C  ^o  y
)  .o  C ) ) )
4640, 36, 44, 45syl21anc 1183 . . . . . . . . . 10  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( 1o  e.  C  ->  ( ( C  ^o  y )  .o  1o )  e.  ( ( C  ^o  y )  .o  C ) ) )
4739, 46mpd 15 . . . . . . . . 9  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( C  ^o  y )  .o  1o )  e.  ( ( C  ^o  y )  .o  C ) )
4838, 47eqeltrrd 2510 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  ( ( C  ^o  y )  .o  C ) )
49 oesuc 6762 . . . . . . . . 9  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  ^o  suc  y )  =  ( ( C  ^o  y
)  .o  C ) )
5013, 49sylan 458 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  suc  y )  =  ( ( C  ^o  y
)  .o  C ) )
5148, 50eleqtrrd 2512 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  y
)  e.  ( C  ^o  suc  y ) )
52 suceloni 4784 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
53 oecl 6772 . . . . . . . . 9  |-  ( ( C  e.  On  /\  suc  y  e.  On )  ->  ( C  ^o  suc  y )  e.  On )
5413, 52, 53syl2an 464 . . . . . . . 8  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( C  ^o  suc  y )  e.  On )
55 ontr1 4619 . . . . . . . 8  |-  ( ( C  ^o  suc  y
)  e.  On  ->  ( ( ( C  ^o  A )  e.  ( C  ^o  y )  /\  ( C  ^o  y )  e.  ( C  ^o  suc  y
) )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y ) ) )
5654, 55syl 16 . . . . . . 7  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( ( C  ^o  A )  e.  ( C  ^o  y
)  /\  ( C  ^o  y )  e.  ( C  ^o  suc  y
) )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y ) ) )
5751, 56mpan2d 656 . . . . . 6  |-  ( ( C  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( ( C  ^o  A )  e.  ( C  ^o  y )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) )
5857expcom 425 . . . . 5  |-  ( y  e.  On  ->  ( C  e.  ( On  \  2o )  ->  (
( C  ^o  A
)  e.  ( C  ^o  y )  -> 
( C  ^o  A
)  e.  ( C  ^o  suc  y ) ) ) )
5958adantr 452 . . . 4  |-  ( ( y  e.  On  /\  A  e.  y )  ->  ( C  e.  ( On  \  2o )  ->  ( ( C  ^o  A )  e.  ( C  ^o  y
)  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) ) )
6059a2d 24 . . 3  |-  ( ( y  e.  On  /\  A  e.  y )  ->  ( ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  y
) ) ) )
61 bi2.04 351 . . . . . 6  |-  ( ( A  e.  y  -> 
( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )  <->  ( C  e.  ( On  \  2o )  ->  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) ) )
6261ralbii 2721 . . . . 5  |-  ( A. y  e.  x  ( A  e.  y  ->  ( C  e.  ( On 
\  2o )  -> 
( C  ^o  A
)  e.  ( C  ^o  y ) ) )  <->  A. y  e.  x  ( C  e.  ( On  \  2o )  -> 
( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) ) )
63 r19.21v 2785 . . . . 5  |-  ( A. y  e.  x  ( C  e.  ( On  \  2o )  ->  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )  <-> 
( C  e.  ( On  \  2o )  ->  A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) ) ) )
6462, 63bitri 241 . . . 4  |-  ( A. y  e.  x  ( A  e.  y  ->  ( C  e.  ( On 
\  2o )  -> 
( C  ^o  A
)  e.  ( C  ^o  y ) ) )  <->  ( C  e.  ( On  \  2o )  ->  A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) ) ) )
65 limsuc 4820 . . . . . . . . . 10  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
6665biimpa 471 . . . . . . . . 9  |-  ( ( Lim  x  /\  A  e.  x )  ->  suc  A  e.  x )
67 elex 2956 . . . . . . . . . . . . 13  |-  ( suc 
A  e.  x  ->  suc  A  e.  _V )
68 sucexb 4780 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
69 sucidg 4651 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  A  e.  suc  A )
7068, 69sylbir 205 . . . . . . . . . . . . 13  |-  ( suc 
A  e.  _V  ->  A  e.  suc  A )
7167, 70syl 16 . . . . . . . . . . . 12  |-  ( suc 
A  e.  x  ->  A  e.  suc  A )
72 eleq2 2496 . . . . . . . . . . . . . 14  |-  ( y  =  suc  A  -> 
( A  e.  y  <-> 
A  e.  suc  A
) )
73 oveq2 6080 . . . . . . . . . . . . . . 15  |-  ( y  =  suc  A  -> 
( C  ^o  y
)  =  ( C  ^o  suc  A ) )
7473eleq2d 2502 . . . . . . . . . . . . . 14  |-  ( y  =  suc  A  -> 
( ( C  ^o  A )  e.  ( C  ^o  y )  <-> 
( C  ^o  A
)  e.  ( C  ^o  suc  A ) ) )
7572, 74imbi12d 312 . . . . . . . . . . . . 13  |-  ( y  =  suc  A  -> 
( ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  <->  ( A  e. 
suc  A  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) ) )
7675rspcv 3040 . . . . . . . . . . . 12  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( A  e.  suc  A  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) ) )
7771, 76mpid 39 . . . . . . . . . . 11  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  ( C  ^o  suc  A
) ) )
7877anc2li 541 . . . . . . . . . 10  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( suc  A  e.  x  /\  ( C  ^o  A )  e.  ( C  ^o  suc  A ) ) ) )
7974rspcev 3044 . . . . . . . . . . 11  |-  ( ( suc  A  e.  x  /\  ( C  ^o  A
)  e.  ( C  ^o  suc  A ) )  ->  E. y  e.  x  ( C  ^o  A )  e.  ( C  ^o  y ) )
80 eliun 4089 . . . . . . . . . . 11  |-  ( ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y )  <->  E. y  e.  x  ( C  ^o  A )  e.  ( C  ^o  y ) )
8179, 80sylibr 204 . . . . . . . . . 10  |-  ( ( suc  A  e.  x  /\  ( C  ^o  A
)  e.  ( C  ^o  suc  A ) )  ->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) )
8278, 81syl6 31 . . . . . . . . 9  |-  ( suc 
A  e.  x  -> 
( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) ) )
8366, 82syl 16 . . . . . . . 8  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) ) )
8483adantr 452 . . . . . . 7  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y
) )  ->  ( C  ^o  A )  e. 
U_ y  e.  x  ( C  ^o  y
) ) )
8513adantl 453 . . . . . . . . . 10  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  C  e.  On )
86 simpl 444 . . . . . . . . . 10  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  Lim  x )
8723adantl 453 . . . . . . . . . 10  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  (/)  e.  C
)
88 vex 2951 . . . . . . . . . . 11  |-  x  e. 
_V
89 oelim 6769 . . . . . . . . . . 11  |-  ( ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  C )  ->  ( C  ^o  x )  =  U_ y  e.  x  ( C  ^o  y ) )
9088, 89mpanlr1 668 . . . . . . . . . 10  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  (/) 
e.  C )  -> 
( C  ^o  x
)  =  U_ y  e.  x  ( C  ^o  y ) )
9185, 86, 87, 90syl21anc 1183 . . . . . . . . 9  |-  ( ( Lim  x  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  x )  = 
U_ y  e.  x  ( C  ^o  y
) )
9291adantlr 696 . . . . . . . 8  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( C  ^o  x )  =  U_ y  e.  x  ( C  ^o  y ) )
9392eleq2d 2502 . . . . . . 7  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( ( C  ^o  A )  e.  ( C  ^o  x
)  <->  ( C  ^o  A )  e.  U_ y  e.  x  ( C  ^o  y ) ) )
9484, 93sylibrd 226 . . . . . 6  |-  ( ( ( Lim  x  /\  A  e.  x )  /\  C  e.  ( On  \  2o ) )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A )  e.  ( C  ^o  y
) )  ->  ( C  ^o  A )  e.  ( C  ^o  x
) ) )
9594ex 424 . . . . 5  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( C  e.  ( On  \  2o )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) ) ) )
9695a2d 24 . . . 4  |-  ( ( Lim  x  /\  A  e.  x )  ->  (
( C  e.  ( On  \  2o )  ->  A. y  e.  x  ( A  e.  y  ->  ( C  ^o  A
)  e.  ( C  ^o  y ) ) )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x ) ) ) )
9764, 96syl5bi 209 . . 3  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  y ) ) )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  x
) ) ) )
983, 6, 9, 12, 34, 60, 97tfindsg2 4832 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( C  e.  ( On  \  2o )  ->  ( C  ^o  A )  e.  ( C  ^o  B ) ) )
9998impancom 428 1  |-  ( ( B  e.  On  /\  C  e.  ( On  \  2o ) )  -> 
( A  e.  B  ->  ( C  ^o  A
)  e.  ( C  ^o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    \ cdif 3309   (/)c0 3620   U_ciun 4085   Oncon0 4573   Lim wlim 4574   suc csuc 4575  (class class class)co 6072   1oc1o 6708   2oc2o 6709    .o comu 6713    ^o coe 6714
This theorem is referenced by:  oeord  6822  oecan  6823  oeworde  6827  oelimcl  6834
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-omul 6720  df-oexp 6721
  Copyright terms: Public domain W3C validator