MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuc Unicode version

Theorem oesuc 6459
Description: Ordinal exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oesuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )

Proof of Theorem oesuc
StepHypRef Expression
1 limon 4564 . 2  |-  Lim  On
2 rdgsuc 6370 . 2  |-  ( B  e.  On  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
31, 2oesuclem 6457 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2740    e. cmpt 4017   Oncon0 4329   suc csuc 4331  (class class class)co 5757   1oc1o 6405    .o comu 6410    ^o coe 6411
This theorem is referenced by:  oecl  6469  oe1m  6476  oen0  6517  oeordi  6518  oewordri  6523  oeordsuc  6525  oeoalem  6527  oeoelem  6529  oeeui  6533  oaabs2  6576  omabs  6578  cantnflt  7306  cnfcom  7336  infxpenc2  7582
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-recs 6321  df-rdg 6356  df-1o 6412  df-omul 6417  df-oexp 6418
  Copyright terms: Public domain W3C validator