MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Unicode version

Theorem oeworde 6545
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde  |-  ( ( A  e.  ( On 
\  2o )  /\  B  e.  On )  ->  B  C_  ( A  ^o  B ) )

Proof of Theorem oeworde
StepHypRef Expression
1 id 21 . . . 4  |-  ( x  =  (/)  ->  x  =  (/) )
2 oveq2 5786 . . . 4  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
31, 2sseq12d 3168 . . 3  |-  ( x  =  (/)  ->  ( x 
C_  ( A  ^o  x )  <->  (/)  C_  ( A  ^o  (/) ) ) )
4 id 21 . . . 4  |-  ( x  =  y  ->  x  =  y )
5 oveq2 5786 . . . 4  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
64, 5sseq12d 3168 . . 3  |-  ( x  =  y  ->  (
x  C_  ( A  ^o  x )  <->  y  C_  ( A  ^o  y
) ) )
7 id 21 . . . 4  |-  ( x  =  suc  y  ->  x  =  suc  y )
8 oveq2 5786 . . . 4  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
97, 8sseq12d 3168 . . 3  |-  ( x  =  suc  y  -> 
( x  C_  ( A  ^o  x )  <->  suc  y  C_  ( A  ^o  suc  y
) ) )
10 id 21 . . . 4  |-  ( x  =  B  ->  x  =  B )
11 oveq2 5786 . . . 4  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
1210, 11sseq12d 3168 . . 3  |-  ( x  =  B  ->  (
x  C_  ( A  ^o  x )  <->  B  C_  ( A  ^o  B ) ) )
13 0ss 3444 . . . 4  |-  (/)  C_  ( A  ^o  (/) )
1413a1i 12 . . 3  |-  ( A  e.  ( On  \  2o )  ->  (/)  C_  ( A  ^o  (/) ) )
15 eloni 4360 . . . . . . 7  |-  ( y  e.  On  ->  Ord  y )
1615adantl 454 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  y )
17 eldifi 3259 . . . . . . . 8  |-  ( A  e.  ( On  \  2o )  ->  A  e.  On )
18 oecl 6490 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
1917, 18sylan 459 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
20 eloni 4360 . . . . . . 7  |-  ( ( A  ^o  y )  e.  On  ->  Ord  ( A  ^o  y
) )
2119, 20syl 17 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  ( A  ^o  y ) )
22 ordsucsssuc 4572 . . . . . 6  |-  ( ( Ord  y  /\  Ord  ( A  ^o  y
) )  ->  (
y  C_  ( A  ^o  y )  <->  suc  y  C_  suc  ( A  ^o  y
) ) )
2316, 21, 22syl2anc 645 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( y  C_  ( A  ^o  y )  <->  suc  y  C_  suc  ( A  ^o  y
) ) )
24 suceloni 4562 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
25 oecl 6490 . . . . . . . . 9  |-  ( ( A  e.  On  /\  suc  y  e.  On )  ->  ( A  ^o  suc  y )  e.  On )
2617, 24, 25syl2an 465 . . . . . . . 8  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  suc  y )  e.  On )
27 eloni 4360 . . . . . . . 8  |-  ( ( A  ^o  suc  y
)  e.  On  ->  Ord  ( A  ^o  suc  y ) )
2826, 27syl 17 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  ( A  ^o  suc  y ) )
29 id 21 . . . . . . . 8  |-  ( A  e.  ( On  \  2o )  ->  A  e.  ( On  \  2o ) )
30 vex 2760 . . . . . . . . . 10  |-  y  e. 
_V
3130sucid 4429 . . . . . . . . 9  |-  y  e. 
suc  y
32 oeordi 6539 . . . . . . . . 9  |-  ( ( suc  y  e.  On  /\  A  e.  ( On 
\  2o ) )  ->  ( y  e. 
suc  y  ->  ( A  ^o  y )  e.  ( A  ^o  suc  y ) ) )
3331, 32mpi 18 . . . . . . . 8  |-  ( ( suc  y  e.  On  /\  A  e.  ( On 
\  2o ) )  ->  ( A  ^o  y )  e.  ( A  ^o  suc  y
) )
3424, 29, 33syl2anr 466 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  ( A  ^o  suc  y ) )
35 ordsucss 4567 . . . . . . 7  |-  ( Ord  ( A  ^o  suc  y )  ->  (
( A  ^o  y
)  e.  ( A  ^o  suc  y )  ->  suc  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) )
3628, 34, 35sylc 58 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  suc  ( A  ^o  y )  C_  ( A  ^o  suc  y ) )
37 sstr2 3147 . . . . . 6  |-  ( suc  y  C_  suc  ( A  ^o  y )  -> 
( suc  ( A  ^o  y )  C_  ( A  ^o  suc  y )  ->  suc  y  C_  ( A  ^o  suc  y
) ) )
3836, 37syl5com 28 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( suc  y  C_  suc  ( A  ^o  y
)  ->  suc  y  C_  ( A  ^o  suc  y
) ) )
3923, 38sylbid 208 . . . 4  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( y  C_  ( A  ^o  y )  ->  suc  y  C_  ( A  ^o  suc  y ) ) )
4039expcom 426 . . 3  |-  ( y  e.  On  ->  ( A  e.  ( On  \  2o )  ->  (
y  C_  ( A  ^o  y )  ->  suc  y  C_  ( A  ^o  suc  y ) ) ) )
41 dif20el 6458 . . . . 5  |-  ( A  e.  ( On  \  2o )  ->  (/)  e.  A
)
4217, 41jca 520 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  ( A  e.  On  /\  (/)  e.  A
) )
43 ss2iun 3880 . . . . . 6  |-  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  U_ y  e.  x  y  C_  U_ y  e.  x  ( A  ^o  y ) )
44 limuni 4410 . . . . . . . . 9  |-  ( Lim  x  ->  x  =  U. x )
45 uniiun 3915 . . . . . . . . 9  |-  U. x  =  U_ y  e.  x  y
4644, 45syl6eq 2304 . . . . . . . 8  |-  ( Lim  x  ->  x  =  U_ y  e.  x  y )
4746adantr 453 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  x  =  U_ y  e.  x  y )
48 vex 2760 . . . . . . . . . 10  |-  x  e. 
_V
49 oelim 6487 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
5048, 49mpanlr1 670 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
5150anasss 631 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( Lim  x  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
5251an12s 779 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
5347, 52sseq12d 3168 . . . . . 6  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  (
x  C_  ( A  ^o  x )  <->  U_ y  e.  x  y  C_  U_ y  e.  x  ( A  ^o  y ) ) )
5443, 53syl5ibr 214 . . . . 5  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A. y  e.  x  y  C_  ( A  ^o  y )  ->  x  C_  ( A  ^o  x
) ) )
5554ex 425 . . . 4  |-  ( Lim  x  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  x  C_  ( A  ^o  x ) ) ) )
5642, 55syl5 30 . . 3  |-  ( Lim  x  ->  ( A  e.  ( On  \  2o )  ->  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  x  C_  ( A  ^o  x ) ) ) )
573, 6, 9, 12, 14, 40, 56tfinds3 4613 . 2  |-  ( B  e.  On  ->  ( A  e.  ( On  \  2o )  ->  B  C_  ( A  ^o  B
) ) )
5857impcom 421 1  |-  ( ( A  e.  ( On 
\  2o )  /\  B  e.  On )  ->  B  C_  ( A  ^o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   _Vcvv 2757    \ cdif 3110    C_ wss 3113   (/)c0 3416   U.cuni 3787   U_ciun 3865   Ord word 4349   Oncon0 4350   Lim wlim 4351   suc csuc 4352  (class class class)co 5778   2oc2o 6427    ^o coe 6432
This theorem is referenced by:  oeeulem  6553  cnfcom3clem  7362
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-omul 6438  df-oexp 6439
  Copyright terms: Public domain W3C validator