MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Unicode version

Theorem oeworde 6607
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde  |-  ( ( A  e.  ( On 
\  2o )  /\  B  e.  On )  ->  B  C_  ( A  ^o  B ) )

Proof of Theorem oeworde
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( x  =  (/)  ->  x  =  (/) )
2 oveq2 5882 . . . 4  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
31, 2sseq12d 3220 . . 3  |-  ( x  =  (/)  ->  ( x 
C_  ( A  ^o  x )  <->  (/)  C_  ( A  ^o  (/) ) ) )
4 id 19 . . . 4  |-  ( x  =  y  ->  x  =  y )
5 oveq2 5882 . . . 4  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
64, 5sseq12d 3220 . . 3  |-  ( x  =  y  ->  (
x  C_  ( A  ^o  x )  <->  y  C_  ( A  ^o  y
) ) )
7 id 19 . . . 4  |-  ( x  =  suc  y  ->  x  =  suc  y )
8 oveq2 5882 . . . 4  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
97, 8sseq12d 3220 . . 3  |-  ( x  =  suc  y  -> 
( x  C_  ( A  ^o  x )  <->  suc  y  C_  ( A  ^o  suc  y
) ) )
10 id 19 . . . 4  |-  ( x  =  B  ->  x  =  B )
11 oveq2 5882 . . . 4  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
1210, 11sseq12d 3220 . . 3  |-  ( x  =  B  ->  (
x  C_  ( A  ^o  x )  <->  B  C_  ( A  ^o  B ) ) )
13 0ss 3496 . . . 4  |-  (/)  C_  ( A  ^o  (/) )
1413a1i 10 . . 3  |-  ( A  e.  ( On  \  2o )  ->  (/)  C_  ( A  ^o  (/) ) )
15 eloni 4418 . . . . . . 7  |-  ( y  e.  On  ->  Ord  y )
1615adantl 452 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  y )
17 eldifi 3311 . . . . . . . 8  |-  ( A  e.  ( On  \  2o )  ->  A  e.  On )
18 oecl 6552 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
1917, 18sylan 457 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
20 eloni 4418 . . . . . . 7  |-  ( ( A  ^o  y )  e.  On  ->  Ord  ( A  ^o  y
) )
2119, 20syl 15 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  ( A  ^o  y ) )
22 ordsucsssuc 4630 . . . . . 6  |-  ( ( Ord  y  /\  Ord  ( A  ^o  y
) )  ->  (
y  C_  ( A  ^o  y )  <->  suc  y  C_  suc  ( A  ^o  y
) ) )
2316, 21, 22syl2anc 642 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( y  C_  ( A  ^o  y )  <->  suc  y  C_  suc  ( A  ^o  y
) ) )
24 suceloni 4620 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
25 oecl 6552 . . . . . . . . 9  |-  ( ( A  e.  On  /\  suc  y  e.  On )  ->  ( A  ^o  suc  y )  e.  On )
2617, 24, 25syl2an 463 . . . . . . . 8  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  suc  y )  e.  On )
27 eloni 4418 . . . . . . . 8  |-  ( ( A  ^o  suc  y
)  e.  On  ->  Ord  ( A  ^o  suc  y ) )
2826, 27syl 15 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  Ord  ( A  ^o  suc  y ) )
29 id 19 . . . . . . . 8  |-  ( A  e.  ( On  \  2o )  ->  A  e.  ( On  \  2o ) )
30 vex 2804 . . . . . . . . . 10  |-  y  e. 
_V
3130sucid 4487 . . . . . . . . 9  |-  y  e. 
suc  y
32 oeordi 6601 . . . . . . . . 9  |-  ( ( suc  y  e.  On  /\  A  e.  ( On 
\  2o ) )  ->  ( y  e. 
suc  y  ->  ( A  ^o  y )  e.  ( A  ^o  suc  y ) ) )
3331, 32mpi 16 . . . . . . . 8  |-  ( ( suc  y  e.  On  /\  A  e.  ( On 
\  2o ) )  ->  ( A  ^o  y )  e.  ( A  ^o  suc  y
) )
3424, 29, 33syl2anr 464 . . . . . . 7  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  ( A  ^o  suc  y ) )
35 ordsucss 4625 . . . . . . 7  |-  ( Ord  ( A  ^o  suc  y )  ->  (
( A  ^o  y
)  e.  ( A  ^o  suc  y )  ->  suc  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) )
3628, 34, 35sylc 56 . . . . . 6  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  suc  ( A  ^o  y )  C_  ( A  ^o  suc  y ) )
37 sstr2 3199 . . . . . 6  |-  ( suc  y  C_  suc  ( A  ^o  y )  -> 
( suc  ( A  ^o  y )  C_  ( A  ^o  suc  y )  ->  suc  y  C_  ( A  ^o  suc  y
) ) )
3836, 37syl5com 26 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( suc  y  C_  suc  ( A  ^o  y
)  ->  suc  y  C_  ( A  ^o  suc  y
) ) )
3923, 38sylbid 206 . . . 4  |-  ( ( A  e.  ( On 
\  2o )  /\  y  e.  On )  ->  ( y  C_  ( A  ^o  y )  ->  suc  y  C_  ( A  ^o  suc  y ) ) )
4039expcom 424 . . 3  |-  ( y  e.  On  ->  ( A  e.  ( On  \  2o )  ->  (
y  C_  ( A  ^o  y )  ->  suc  y  C_  ( A  ^o  suc  y ) ) ) )
41 dif20el 6520 . . . . 5  |-  ( A  e.  ( On  \  2o )  ->  (/)  e.  A
)
4217, 41jca 518 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  ( A  e.  On  /\  (/)  e.  A
) )
43 ss2iun 3936 . . . . . 6  |-  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  U_ y  e.  x  y  C_  U_ y  e.  x  ( A  ^o  y ) )
44 limuni 4468 . . . . . . . . 9  |-  ( Lim  x  ->  x  =  U. x )
45 uniiun 3971 . . . . . . . . 9  |-  U. x  =  U_ y  e.  x  y
4644, 45syl6eq 2344 . . . . . . . 8  |-  ( Lim  x  ->  x  =  U_ y  e.  x  y )
4746adantr 451 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  x  =  U_ y  e.  x  y )
48 vex 2804 . . . . . . . . . 10  |-  x  e. 
_V
49 oelim 6549 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
5048, 49mpanlr1 667 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
5150anasss 628 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( Lim  x  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
5251an12s 776 . . . . . . 7  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
5347, 52sseq12d 3220 . . . . . 6  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  (
x  C_  ( A  ^o  x )  <->  U_ y  e.  x  y  C_  U_ y  e.  x  ( A  ^o  y ) ) )
5443, 53syl5ibr 212 . . . . 5  |-  ( ( Lim  x  /\  ( A  e.  On  /\  (/)  e.  A
) )  ->  ( A. y  e.  x  y  C_  ( A  ^o  y )  ->  x  C_  ( A  ^o  x
) ) )
5554ex 423 . . . 4  |-  ( Lim  x  ->  ( ( A  e.  On  /\  (/)  e.  A
)  ->  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  x  C_  ( A  ^o  x ) ) ) )
5642, 55syl5 28 . . 3  |-  ( Lim  x  ->  ( A  e.  ( On  \  2o )  ->  ( A. y  e.  x  y  C_  ( A  ^o  y
)  ->  x  C_  ( A  ^o  x ) ) ) )
573, 6, 9, 12, 14, 40, 56tfinds3 4671 . 2  |-  ( B  e.  On  ->  ( A  e.  ( On  \  2o )  ->  B  C_  ( A  ^o  B
) ) )
5857impcom 419 1  |-  ( ( A  e.  ( On 
\  2o )  /\  B  e.  On )  ->  B  C_  ( A  ^o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    \ cdif 3162    C_ wss 3165   (/)c0 3468   U.cuni 3843   U_ciun 3921   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410  (class class class)co 5874   2oc2o 6489    ^o coe 6494
This theorem is referenced by:  oeeulem  6615  cnfcom3clem  7424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-oexp 6501
  Copyright terms: Public domain W3C validator