MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordri Unicode version

Theorem oewordri 6523
Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordri  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )

Proof of Theorem oewordri
StepHypRef Expression
1 oveq2 5765 . . . . 5  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
2 oveq2 5765 . . . . 5  |-  ( x  =  (/)  ->  ( B  ^o  x )  =  ( B  ^o  (/) ) )
31, 2sseq12d 3149 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  x ) 
C_  ( B  ^o  x )  <->  ( A  ^o  (/) )  C_  ( B  ^o  (/) ) ) )
4 oveq2 5765 . . . . 5  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
5 oveq2 5765 . . . . 5  |-  ( x  =  y  ->  ( B  ^o  x )  =  ( B  ^o  y
) )
64, 5sseq12d 3149 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  ( A  ^o  y )  C_  ( B  ^o  y ) ) )
7 oveq2 5765 . . . . 5  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
8 oveq2 5765 . . . . 5  |-  ( x  =  suc  y  -> 
( B  ^o  x
)  =  ( B  ^o  suc  y ) )
97, 8sseq12d 3149 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  x )  C_  ( B  ^o  x )  <->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y
) ) )
10 oveq2 5765 . . . . 5  |-  ( x  =  C  ->  ( A  ^o  x )  =  ( A  ^o  C
) )
11 oveq2 5765 . . . . 5  |-  ( x  =  C  ->  ( B  ^o  x )  =  ( B  ^o  C
) )
1210, 11sseq12d 3149 . . . 4  |-  ( x  =  C  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  ( A  ^o  C )  C_  ( B  ^o  C ) ) )
13 onelon 4354 . . . . . . 7  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
14 oe0 6454 . . . . . . 7  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
1513, 14syl 17 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  =  1o )
16 oe0 6454 . . . . . . 7  |-  ( B  e.  On  ->  ( B  ^o  (/) )  =  1o )
1716adantr 453 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( B  ^o  (/) )  =  1o )
1815, 17eqtr4d 2291 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  =  ( B  ^o  (/) ) )
19 eqimss 3172 . . . . 5  |-  ( ( A  ^o  (/) )  =  ( B  ^o  (/) )  -> 
( A  ^o  (/) )  C_  ( B  ^o  (/) ) )
2018, 19syl 17 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  C_  ( B  ^o  (/) ) )
21 simpl 445 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  B  e.  On )
22 onelss 4371 . . . . . . 7  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
2322imp 420 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  C_  B )
2413, 21, 23jca31 522 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B ) )
25 oecl 6469 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
26253adant2 979 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  ^o  y )  e.  On )
27 oecl 6469 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  ^o  y
)  e.  On )
28273adant1 978 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  ^o  y )  e.  On )
29 simp1 960 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  A  e.  On )
30 omwordri 6503 . . . . . . . . . . . . 13  |-  ( ( ( A  ^o  y
)  e.  On  /\  ( B  ^o  y
)  e.  On  /\  A  e.  On )  ->  ( ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( ( A  ^o  y )  .o  A
)  C_  ( ( B  ^o  y )  .o  A ) ) )
3126, 28, 29, 30syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  (
( A  ^o  y
)  C_  ( B  ^o  y )  ->  (
( A  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  A ) ) )
3231imp 420 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) )  -> 
( ( A  ^o  y )  .o  A
)  C_  ( ( B  ^o  y )  .o  A ) )
3332adantrl 699 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( A  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  A ) )
34 omwordi 6502 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( B  ^o  y )  e.  On )  ->  ( A  C_  B  ->  (
( B  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  B ) ) )
3528, 34syld3an3 1232 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  C_  B  ->  (
( B  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  B ) ) )
3635imp 420 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  A  C_  B )  ->  ( ( B  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
3736adantrr 700 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( B  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
3833, 37sstrd 3131 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( A  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
39 oesuc 6459 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
40393adant2 979 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y )  .o  A ) )
4140adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
42 oesuc 6459 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y
)  .o  B ) )
43423adant1 978 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y )  .o  B ) )
4443adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y
)  .o  B ) )
4538, 41, 443sstr4d 3163 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y ) )
4645exp520 1177 . . . . . . 7  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( A  C_  B  ->  ( ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) ) ) )
4746com3r 75 . . . . . 6  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( B  e.  On  ->  ( A  C_  B  ->  ( ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) ) ) )
4847imp4c 577 . . . . 5  |-  ( y  e.  On  ->  (
( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B )  ->  (
( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) )
4924, 48syl5 30 . . . 4  |-  ( y  e.  On  ->  (
( B  e.  On  /\  A  e.  B )  ->  ( ( A  ^o  y )  C_  ( B  ^o  y
)  ->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y
) ) ) )
5013ancri 537 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) ) )
51 vex 2743 . . . . . . . . . . . . 13  |-  x  e. 
_V
52 limelon 4392 . . . . . . . . . . . . 13  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
5351, 52mpan 654 . . . . . . . . . . . 12  |-  ( Lim  x  ->  x  e.  On )
54 0ellim 4391 . . . . . . . . . . . 12  |-  ( Lim  x  ->  (/)  e.  x
)
55 oe0m1 6453 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  ( (/)  ^o  x
)  =  (/) ) )
5655biimpa 472 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  (/) 
e.  x )  -> 
( (/)  ^o  x )  =  (/) )
5753, 54, 56syl2anc 645 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( (/)  ^o  x
)  =  (/) )
58 0ss 3425 . . . . . . . . . . . 12  |-  (/)  C_  ( B  ^o  x )
5958a1i 12 . . . . . . . . . . 11  |-  ( Lim  x  ->  (/)  C_  ( B  ^o  x ) )
6057, 59eqsstrd 3154 . . . . . . . . . 10  |-  ( Lim  x  ->  ( (/)  ^o  x
)  C_  ( B  ^o  x ) )
61 oveq1 5764 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  ( A  ^o  x )  =  ( (/)  ^o  x
) )
6261sseq1d 3147 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( ( A  ^o  x ) 
C_  ( B  ^o  x )  <->  ( (/)  ^o  x
)  C_  ( B  ^o  x ) ) )
6360, 62syl5ibr 214 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( Lim  x  ->  ( A  ^o  x )  C_  ( B  ^o  x ) ) )
6463adantl 454 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  A  =  (/) )  ->  ( Lim  x  ->  ( A  ^o  x
)  C_  ( B  ^o  x ) ) )
6564a1dd 44 . . . . . . 7  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  A  =  (/) )  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
66 ss2iun 3861 . . . . . . . . 9  |-  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y
)  ->  U_ y  e.  x  ( A  ^o  y )  C_  U_ y  e.  x  ( B  ^o  y ) )
67 oelim 6466 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
6851, 67mpanlr1 670 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
6968an32s 782 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
7069adantllr 702 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
7121anim1i 554 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  ( B  e.  On  /\  Lim  x
) )
72 ne0i 3403 . . . . . . . . . . . . . . . 16  |-  ( A  e.  B  ->  B  =/=  (/) )
73 on0eln0 4384 . . . . . . . . . . . . . . . 16  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
7472, 73syl5ibr 214 . . . . . . . . . . . . . . 15  |-  ( B  e.  On  ->  ( A  e.  B  ->  (/)  e.  B ) )
7574imp 420 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  A  e.  B )  -> 
(/)  e.  B )
7675adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  (/)  e.  B )
77 oelim 6466 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  B )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
7851, 77mpanlr1 670 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  -> 
( B  ^o  x
)  =  U_ y  e.  x  ( B  ^o  y ) )
7971, 76, 78syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
8079adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  On  /\  A  e.  B )  /\  (/)  e.  A
)  /\  Lim  x )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
8180adantlll 701 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( B  ^o  x )  = 
U_ y  e.  x  ( B  ^o  y
) )
8270, 81sseq12d 3149 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  U_ y  e.  x  ( A  ^o  y )  C_  U_ y  e.  x  ( B  ^o  y ) ) )
8366, 82syl5ibr 214 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( A. y  e.  x  ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  x )  C_  ( B  ^o  x
) ) )
8483ex 425 . . . . . . 7  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/)  e.  A
)  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8565, 84oe0lem 6445 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8685com12 29 . . . . 5  |-  ( Lim  x  ->  ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  -> 
( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8750, 86syl5 30 . . . 4  |-  ( Lim  x  ->  ( ( B  e.  On  /\  A  e.  B )  ->  ( A. y  e.  x  ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  x )  C_  ( B  ^o  x
) ) ) )
883, 6, 9, 12, 20, 49, 87tfinds3 4592 . . 3  |-  ( C  e.  On  ->  (
( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  C )  C_  ( B  ^o  C ) ) )
8988exp3a 427 . 2  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( A  e.  B  -> 
( A  ^o  C
)  C_  ( B  ^o  C ) ) ) )
9089impcom 421 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   _Vcvv 2740    C_ wss 3094   (/)c0 3397   U_ciun 3846   Oncon0 4329   Lim wlim 4330   suc csuc 4331  (class class class)co 5757   1oc1o 6405    .o comu 6410    ^o coe 6411
This theorem is referenced by:  oeordsuc  6525
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-omul 6417  df-oexp 6418
  Copyright terms: Public domain W3C validator