MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc12 Unicode version

Theorem ofc12 6104
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
ofc12.1  |-  ( ph  ->  A  e.  V )
ofc12.2  |-  ( ph  ->  B  e.  W )
ofc12.3  |-  ( ph  ->  C  e.  X )
Assertion
Ref Expression
ofc12  |-  ( ph  ->  ( ( A  X.  { B } )  o F R ( A  X.  { C }
) )  =  ( A  X.  { ( B R C ) } ) )

Proof of Theorem ofc12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofc12.1 . . 3  |-  ( ph  ->  A  e.  V )
2 ofc12.2 . . . 4  |-  ( ph  ->  B  e.  W )
32adantr 451 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
4 ofc12.3 . . . 4  |-  ( ph  ->  C  e.  X )
54adantr 451 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
6 fconstmpt 4734 . . . 4  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
76a1i 10 . . 3  |-  ( ph  ->  ( A  X.  { B } )  =  ( x  e.  A  |->  B ) )
8 fconstmpt 4734 . . . 4  |-  ( A  X.  { C }
)  =  ( x  e.  A  |->  C )
98a1i 10 . . 3  |-  ( ph  ->  ( A  X.  { C } )  =  ( x  e.  A  |->  C ) )
101, 3, 5, 7, 9offval2 6097 . 2  |-  ( ph  ->  ( ( A  X.  { B } )  o F R ( A  X.  { C }
) )  =  ( x  e.  A  |->  ( B R C ) ) )
11 fconstmpt 4734 . 2  |-  ( A  X.  { ( B R C ) } )  =  ( x  e.  A  |->  ( B R C ) )
1210, 11syl6eqr 2335 1  |-  ( ph  ->  ( ( A  X.  { B } )  o F R ( A  X.  { C }
) )  =  ( A  X.  { ( B R C ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686   {csn 3642    e. cmpt 4079    X. cxp 4689  (class class class)co 5860    o Fcof 6078
This theorem is referenced by:  pwsdiagmhm  14447  pwsdiaglmhm  15816  psrlmod  16148  coe1mul2  16348  itg2mulc  19104  dgrmulc  19654  mendlmod  27512  expgrowth  27563  lflvsdi2a  29343  lflvsass  29344  lflsc0N  29346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080
  Copyright terms: Public domain W3C validator