Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmpteq Unicode version

Theorem ofmpteq 26808
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
ofmpteq  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B R C ) ) )
Distinct variable groups:    x, A    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem ofmpteq
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  A  e.  V )
2 simpr 447 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  a  e.  A )
3 simpl2 959 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  (
x  e.  A  |->  B )  Fn  A )
4 eqid 2285 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5371 . . . . 5  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
63, 5sylibr 203 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  A. x  e.  A  B  e.  _V )
7 nfcsb1v 3115 . . . . . 6  |-  F/_ x [_ a  /  x ]_ B
87nfel1 2431 . . . . 5  |-  F/ x [_ a  /  x ]_ B  e.  _V
9 csbeq1a 3091 . . . . . 6  |-  ( x  =  a  ->  B  =  [_ a  /  x ]_ B )
109eleq1d 2351 . . . . 5  |-  ( x  =  a  ->  ( B  e.  _V  <->  [_ a  /  x ]_ B  e.  _V ) )
118, 10rspc 2880 . . . 4  |-  ( a  e.  A  ->  ( A. x  e.  A  B  e.  _V  ->  [_ a  /  x ]_ B  e.  _V )
)
122, 6, 11sylc 56 . . 3  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  [_ a  /  x ]_ B  e. 
_V )
13 simpl3 960 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  (
x  e.  A  |->  C )  Fn  A )
14 eqid 2285 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1514mptfng 5371 . . . . 5  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
1613, 15sylibr 203 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  A. x  e.  A  C  e.  _V )
17 nfcsb1v 3115 . . . . . 6  |-  F/_ x [_ a  /  x ]_ C
1817nfel1 2431 . . . . 5  |-  F/ x [_ a  /  x ]_ C  e.  _V
19 csbeq1a 3091 . . . . . 6  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
2019eleq1d 2351 . . . . 5  |-  ( x  =  a  ->  ( C  e.  _V  <->  [_ a  /  x ]_ C  e.  _V ) )
2118, 20rspc 2880 . . . 4  |-  ( a  e.  A  ->  ( A. x  e.  A  C  e.  _V  ->  [_ a  /  x ]_ C  e.  _V )
)
222, 16, 21sylc 56 . . 3  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e. 
_V )
23 nfcv 2421 . . . . 5  |-  F/_ a B
2423, 7, 9cbvmpt 4112 . . . 4  |-  ( x  e.  A  |->  B )  =  ( a  e.  A  |->  [_ a  /  x ]_ B )
2524a1i 10 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( x  e.  A  |->  B )  =  ( a  e.  A  |->  [_ a  /  x ]_ B ) )
26 nfcv 2421 . . . . 5  |-  F/_ a C
2726, 17, 19cbvmpt 4112 . . . 4  |-  ( x  e.  A  |->  C )  =  ( a  e.  A  |->  [_ a  /  x ]_ C )
2827a1i 10 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( x  e.  A  |->  C )  =  ( a  e.  A  |->  [_ a  /  x ]_ C ) )
291, 12, 22, 25, 28offval2 6097 . 2  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( a  e.  A  |->  ( [_ a  /  x ]_ B R [_ a  /  x ]_ C
) ) )
30 nfcv 2421 . . 3  |-  F/_ a
( B R C )
31 nfcv 2421 . . . 4  |-  F/_ x R
327, 31, 17nfov 5883 . . 3  |-  F/_ x
( [_ a  /  x ]_ B R [_ a  /  x ]_ C )
339, 19oveq12d 5878 . . 3  |-  ( x  =  a  ->  ( B R C )  =  ( [_ a  /  x ]_ B R [_ a  /  x ]_ C
) )
3430, 32, 33cbvmpt 4112 . 2  |-  ( x  e.  A  |->  ( B R C ) )  =  ( a  e.  A  |->  ( [_ a  /  x ]_ B R
[_ a  /  x ]_ C ) )
3529, 34syl6eqr 2335 1  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   A.wral 2545   _Vcvv 2790   [_csb 3083    e. cmpt 4079    Fn wfn 5252  (class class class)co 5860    o Fcof 6078
This theorem is referenced by:  mzpaddmpt  26830  mzpmulmpt  26831  mzpcompact2lem  26840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080
  Copyright terms: Public domain W3C validator