MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubeq0 Unicode version

Theorem ofsubeq0 9986
Description: Function analog of subeq0 9316. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubeq0  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )

Proof of Theorem ofsubeq0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp2 958 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F : A --> CC )
2 ffn 5582 . . . . . . 7  |-  ( F : A --> CC  ->  F  Fn  A )
31, 2syl 16 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F  Fn  A
)
4 simp3 959 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G : A --> CC )
5 ffn 5582 . . . . . . 7  |-  ( G : A --> CC  ->  G  Fn  A )
64, 5syl 16 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G  Fn  A
)
7 simp1 957 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  A  e.  V
)
8 inidm 3542 . . . . . 6  |-  ( A  i^i  A )  =  A
9 eqidd 2436 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  =  ( F `  x ) )
10 eqidd 2436 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  =  ( G `  x ) )
113, 6, 7, 7, 8, 9, 10ofval 6305 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F  o F  -  G
) `  x )  =  ( ( F `
 x )  -  ( G `  x ) ) )
12 c0ex 9074 . . . . . . 7  |-  0  e.  _V
1312fvconst2 5938 . . . . . 6  |-  ( x  e.  A  ->  (
( A  X.  {
0 } ) `  x )  =  0 )
1413adantl 453 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( A  X.  { 0 } ) `  x )  =  0 )
1511, 14eqeq12d 2449 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( ( F `  x )  -  ( G `  x ) )  =  0 ) )
161ffvelrnda 5861 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  e.  CC )
174ffvelrnda 5861 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  e.  CC )
1816, 17subeq0ad 9410 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F `  x
)  -  ( G `
 x ) )  =  0  <->  ( F `  x )  =  ( G `  x ) ) )
1915, 18bitrd 245 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
2019ralbidva 2713 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( A. x  e.  A  ( ( F  o F  -  G
) `  x )  =  ( ( A  X.  { 0 } ) `  x )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
213, 6, 7, 7, 8offn 6307 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  o F  -  G )  Fn  A )
2212fconst 5620 . . . 4  |-  ( A  X.  { 0 } ) : A --> { 0 }
23 ffn 5582 . . . 4  |-  ( ( A  X.  { 0 } ) : A --> { 0 }  ->  ( A  X.  { 0 } )  Fn  A
)
2422, 23ax-mp 8 . . 3  |-  ( A  X.  { 0 } )  Fn  A
25 eqfnfv 5818 . . 3  |-  ( ( ( F  o F  -  G )  Fn  A  /\  ( A  X.  { 0 } )  Fn  A )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
2621, 24, 25sylancl 644 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
27 eqfnfv 5818 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
283, 6, 27syl2anc 643 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
2920, 26, 283bitr4d 277 1  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   {csn 3806    X. cxp 4867    Fn wfn 5440   -->wf 5441   ` cfv 5445  (class class class)co 6072    o Fcof 6294   CCcc 8977   0cc0 8979    - cmin 9280
This theorem is referenced by:  psrridm  16456  dv11cn  19873  coeeulem  20131  plydiveu  20203  facth  20211  quotcan  20214  plyexmo  20218  mpaaeu  27270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-riota 6540  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-ltxr 9114  df-sub 9282
  Copyright terms: Public domain W3C validator