MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubeq0 Structured version   Unicode version

Theorem ofsubeq0 10028
Description: Function analog of subeq0 9358. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubeq0  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )

Proof of Theorem ofsubeq0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp2 959 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F : A --> CC )
2 ffn 5620 . . . . . . 7  |-  ( F : A --> CC  ->  F  Fn  A )
31, 2syl 16 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F  Fn  A
)
4 simp3 960 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G : A --> CC )
5 ffn 5620 . . . . . . 7  |-  ( G : A --> CC  ->  G  Fn  A )
64, 5syl 16 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G  Fn  A
)
7 simp1 958 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  A  e.  V
)
8 inidm 3535 . . . . . 6  |-  ( A  i^i  A )  =  A
9 eqidd 2443 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  =  ( F `  x ) )
10 eqidd 2443 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  =  ( G `  x ) )
113, 6, 7, 7, 8, 9, 10ofval 6343 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F  o F  -  G
) `  x )  =  ( ( F `
 x )  -  ( G `  x ) ) )
12 c0ex 9116 . . . . . . 7  |-  0  e.  _V
1312fvconst2 5976 . . . . . 6  |-  ( x  e.  A  ->  (
( A  X.  {
0 } ) `  x )  =  0 )
1413adantl 454 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( A  X.  { 0 } ) `  x )  =  0 )
1511, 14eqeq12d 2456 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( ( F `  x )  -  ( G `  x ) )  =  0 ) )
161ffvelrnda 5899 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  e.  CC )
174ffvelrnda 5899 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  e.  CC )
1816, 17subeq0ad 9452 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F `  x
)  -  ( G `
 x ) )  =  0  <->  ( F `  x )  =  ( G `  x ) ) )
1915, 18bitrd 246 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
2019ralbidva 2727 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( A. x  e.  A  ( ( F  o F  -  G
) `  x )  =  ( ( A  X.  { 0 } ) `  x )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
213, 6, 7, 7, 8offn 6345 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  o F  -  G )  Fn  A )
2212fconst 5658 . . . 4  |-  ( A  X.  { 0 } ) : A --> { 0 }
23 ffn 5620 . . . 4  |-  ( ( A  X.  { 0 } ) : A --> { 0 }  ->  ( A  X.  { 0 } )  Fn  A
)
2422, 23ax-mp 5 . . 3  |-  ( A  X.  { 0 } )  Fn  A
25 eqfnfv 5856 . . 3  |-  ( ( ( F  o F  -  G )  Fn  A  /\  ( A  X.  { 0 } )  Fn  A )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
2621, 24, 25sylancl 645 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
27 eqfnfv 5856 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
283, 6, 27syl2anc 644 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
2920, 26, 283bitr4d 278 1  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   A.wral 2711   {csn 3838    X. cxp 4905    Fn wfn 5478   -->wf 5479   ` cfv 5483  (class class class)co 6110    o Fcof 6332   CCcc 9019   0cc0 9021    - cmin 9322
This theorem is referenced by:  psrridm  16499  dv11cn  19916  coeeulem  20174  plydiveu  20246  facth  20254  quotcan  20257  plyexmo  20261  mpaaeu  27370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-po 4532  df-so 4533  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-riota 6578  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-ltxr 9156  df-sub 9324
  Copyright terms: Public domain W3C validator