MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubeq0 Unicode version

Theorem ofsubeq0 9697
Description: Function analog of subeq0 9027. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubeq0  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )

Proof of Theorem ofsubeq0
StepHypRef Expression
1 simp2 961 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F : A --> CC )
2 ffn 5313 . . . . . . 7  |-  ( F : A --> CC  ->  F  Fn  A )
31, 2syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F  Fn  A
)
4 simp3 962 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G : A --> CC )
5 ffn 5313 . . . . . . 7  |-  ( G : A --> CC  ->  G  Fn  A )
64, 5syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G  Fn  A
)
7 simp1 960 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  A  e.  V
)
8 inidm 3339 . . . . . 6  |-  ( A  i^i  A )  =  A
9 eqidd 2257 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  =  ( F `  x ) )
10 eqidd 2257 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  =  ( G `  x ) )
113, 6, 7, 7, 8, 9, 10ofval 6007 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F  o F  -  G
) `  x )  =  ( ( F `
 x )  -  ( G `  x ) ) )
12 c0ex 8786 . . . . . . 7  |-  0  e.  _V
1312fvconst2 5649 . . . . . 6  |-  ( x  e.  A  ->  (
( A  X.  {
0 } ) `  x )  =  0 )
1413adantl 454 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( A  X.  { 0 } ) `  x )  =  0 )
1511, 14eqeq12d 2270 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( ( F `  x )  -  ( G `  x ) )  =  0 ) )
16 ffvelrn 5583 . . . . . 6  |-  ( ( F : A --> CC  /\  x  e.  A )  ->  ( F `  x
)  e.  CC )
171, 16sylan 459 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  e.  CC )
18 ffvelrn 5583 . . . . . 6  |-  ( ( G : A --> CC  /\  x  e.  A )  ->  ( G `  x
)  e.  CC )
194, 18sylan 459 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  e.  CC )
20 subeq0 9027 . . . . 5  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( ( F `
 x )  -  ( G `  x ) )  =  0  <->  ( F `  x )  =  ( G `  x ) ) )
2117, 19, 20syl2anc 645 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F `  x
)  -  ( G `
 x ) )  =  0  <->  ( F `  x )  =  ( G `  x ) ) )
2215, 21bitrd 246 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
2322ralbidva 2532 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( A. x  e.  A  ( ( F  o F  -  G
) `  x )  =  ( ( A  X.  { 0 } ) `  x )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
243, 6, 7, 7, 8offn 6009 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  o F  -  G )  Fn  A )
2512fconst 5351 . . . 4  |-  ( A  X.  { 0 } ) : A --> { 0 }
26 ffn 5313 . . . 4  |-  ( ( A  X.  { 0 } ) : A --> { 0 }  ->  ( A  X.  { 0 } )  Fn  A
)
2725, 26ax-mp 10 . . 3  |-  ( A  X.  { 0 } )  Fn  A
28 eqfnfv 5542 . . 3  |-  ( ( ( F  o F  -  G )  Fn  A  /\  ( A  X.  { 0 } )  Fn  A )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
2924, 27, 28sylancl 646 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
30 eqfnfv 5542 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
313, 6, 30syl2anc 645 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
3223, 29, 313bitr4d 278 1  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2516   {csn 3600    X. cxp 4645    Fn wfn 4654   -->wf 4655   ` cfv 4659  (class class class)co 5778    o Fcof 5996   CCcc 8689   0cc0 8691    - cmin 8991
This theorem is referenced by:  psrridm  16097  dv11cn  19296  coeeulem  19554  plydiveu  19626  facth  19634  quotcan  19637  plyexmo  19641  mpaaeu  26708
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-po 4272  df-so 4273  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-iota 6211  df-riota 6258  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-pnf 8823  df-mnf 8824  df-ltxr 8826  df-sub 8993
  Copyright terms: Public domain W3C validator