MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubeq0 Unicode version

Theorem ofsubeq0 9738
Description: Function analog of subeq0 9068. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubeq0  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )
Dummy variable  x is distinct from all other variables.

Proof of Theorem ofsubeq0
StepHypRef Expression
1 simp2 958 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F : A --> CC )
2 ffn 5354 . . . . . . 7  |-  ( F : A --> CC  ->  F  Fn  A )
31, 2syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F  Fn  A
)
4 simp3 959 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G : A --> CC )
5 ffn 5354 . . . . . . 7  |-  ( G : A --> CC  ->  G  Fn  A )
64, 5syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G  Fn  A
)
7 simp1 957 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  A  e.  V
)
8 inidm 3379 . . . . . 6  |-  ( A  i^i  A )  =  A
9 eqidd 2285 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  =  ( F `  x ) )
10 eqidd 2285 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  =  ( G `  x ) )
113, 6, 7, 7, 8, 9, 10ofval 6048 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F  o F  -  G
) `  x )  =  ( ( F `
 x )  -  ( G `  x ) ) )
12 c0ex 8827 . . . . . . 7  |-  0  e.  _V
1312fvconst2 5690 . . . . . 6  |-  ( x  e.  A  ->  (
( A  X.  {
0 } ) `  x )  =  0 )
1413adantl 454 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( A  X.  { 0 } ) `  x )  =  0 )
1511, 14eqeq12d 2298 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( ( F `  x )  -  ( G `  x ) )  =  0 ) )
16 ffvelrn 5624 . . . . . 6  |-  ( ( F : A --> CC  /\  x  e.  A )  ->  ( F `  x
)  e.  CC )
171, 16sylan 459 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  e.  CC )
18 ffvelrn 5624 . . . . . 6  |-  ( ( G : A --> CC  /\  x  e.  A )  ->  ( G `  x
)  e.  CC )
194, 18sylan 459 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  e.  CC )
20 subeq0 9068 . . . . 5  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( ( F `
 x )  -  ( G `  x ) )  =  0  <->  ( F `  x )  =  ( G `  x ) ) )
2117, 19, 20syl2anc 644 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F `  x
)  -  ( G `
 x ) )  =  0  <->  ( F `  x )  =  ( G `  x ) ) )
2215, 21bitrd 246 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
2322ralbidva 2560 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( A. x  e.  A  ( ( F  o F  -  G
) `  x )  =  ( ( A  X.  { 0 } ) `  x )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
243, 6, 7, 7, 8offn 6050 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  o F  -  G )  Fn  A )
2512fconst 5392 . . . 4  |-  ( A  X.  { 0 } ) : A --> { 0 }
26 ffn 5354 . . . 4  |-  ( ( A  X.  { 0 } ) : A --> { 0 }  ->  ( A  X.  { 0 } )  Fn  A
)
2725, 26ax-mp 10 . . 3  |-  ( A  X.  { 0 } )  Fn  A
28 eqfnfv 5583 . . 3  |-  ( ( ( F  o F  -  G )  Fn  A  /\  ( A  X.  { 0 } )  Fn  A )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
2924, 27, 28sylancl 645 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  A. x  e.  A  ( ( F  o F  -  G ) `  x )  =  ( ( A  X.  {
0 } ) `  x ) ) )
30 eqfnfv 5583 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
313, 6, 30syl2anc 644 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
3223, 29, 313bitr4d 278 1  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( F  o F  -  G
)  =  ( A  X.  { 0 } )  <->  F  =  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2544   {csn 3641    X. cxp 4686    Fn wfn 5216   -->wf 5217   ` cfv 5221  (class class class)co 5819    o Fcof 6037   CCcc 8730   0cc0 8732    - cmin 9032
This theorem is referenced by:  psrridm  16143  dv11cn  19342  coeeulem  19600  plydiveu  19672  facth  19680  quotcan  19683  plyexmo  19687  mpaaeu  26754
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-iota 6252  df-riota 6299  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-ltxr 8867  df-sub 9034
  Copyright terms: Public domain W3C validator