Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm11 Unicode version

Theorem olm11 29490
Description: The meet of an ortholattice element with one equals itself. (chm1i 22037 analog.) (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b  |-  B  =  ( Base `  K
)
olm1.m  |-  ./\  =  ( meet `  K )
olm1.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
olm11  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  .1.  )  =  X )

Proof of Theorem olm11
StepHypRef Expression
1 olop 29477 . . . . . . 7  |-  ( K  e.  OL  ->  K  e.  OP )
21adantr 451 . . . . . 6  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  K  e.  OP )
3 eqid 2285 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
4 olm1.u . . . . . . 7  |-  .1.  =  ( 1. `  K )
5 eqid 2285 . . . . . . 7  |-  ( oc
`  K )  =  ( oc `  K
)
63, 4, 5opoc1 29465 . . . . . 6  |-  ( K  e.  OP  ->  (
( oc `  K
) `  .1.  )  =  ( 0. `  K ) )
72, 6syl 15 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( oc `  K ) `  .1.  )  =  ( 0. `  K ) )
87oveq2d 5876 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 .1.  ) )  =  ( ( ( oc `  K ) `
 X ) (
join `  K )
( 0. `  K
) ) )
9 olm1.b . . . . . . 7  |-  B  =  ( Base `  K
)
109, 5opoccl 29457 . . . . . 6  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
111, 10sylan 457 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
12 eqid 2285 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
139, 12, 3olj01 29488 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( oc `  K ) `  X
)  e.  B )  ->  ( ( ( oc `  K ) `
 X ) (
join `  K )
( 0. `  K
) )  =  ( ( oc `  K
) `  X )
)
1411, 13syldan 456 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) ( 0.
`  K ) )  =  ( ( oc
`  K ) `  X ) )
158, 14eqtrd 2317 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 .1.  ) )  =  ( ( oc
`  K ) `  X ) )
1615fveq2d 5531 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  .1.  ) ) )  =  ( ( oc `  K ) `  (
( oc `  K
) `  X )
) )
179, 4op1cl 29448 . . . 4  |-  ( K  e.  OP  ->  .1.  e.  B )
182, 17syl 15 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  .1.  e.  B )
19 olm1.m . . . 4  |-  ./\  =  ( meet `  K )
209, 12, 19, 5oldmj4 29487 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .1.  e.  B )  -> 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  .1.  ) ) )  =  ( X  ./\  .1.  ) )
2118, 20mpd3an3 1278 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  .1.  ) ) )  =  ( X  ./\  .1.  ) )
229, 5opococ 29458 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  (
( oc `  K
) `  X )
)  =  X )
231, 22sylan 457 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( ( oc `  K ) `  (
( oc `  K
) `  X )
)  =  X )
2416, 21, 233eqtr3d 2325 1  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  .1.  )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   ` cfv 5257  (class class class)co 5860   Basecbs 13150   occoc 13218   joincjn 14080   meetcmee 14081   0.cp0 14145   1.cp1 14146   OPcops 29435   OLcol 29437
This theorem is referenced by:  olm12  29491  lhpmcvr3  30287  trljat1  30428  trljat2  30429  cdlemc1  30453  cdlemc6  30458  cdleme0cp  30476  cdleme0cq  30477  cdleme1  30489  cdleme4  30500  cdleme5  30502  cdleme8  30512  cdleme9  30515  cdleme10  30516  cdleme20c  30573  cdleme20j  30580  cdleme22e  30606  cdleme22eALTN  30607  cdleme30a  30640  cdleme35b  30712  cdleme35e  30715  cdleme42a  30733  trlcoabs2N  30984  trlcolem  30988  cdlemi1  31080  cdlemk4  31096  dia2dimlem1  31327  cdlemn10  31469  dihglbcpreN  31563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-oposet 29439  df-ol 29441
  Copyright terms: Public domain W3C validator