MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om00 Unicode version

Theorem om00 6777
Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
om00  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )

Proof of Theorem om00
StepHypRef Expression
1 neanior 2652 . . . . 5  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  -.  ( A  =  (/)  \/  B  =  (/) ) )
2 eloni 4551 . . . . . . . . . 10  |-  ( A  e.  On  ->  Ord  A )
3 ordge1n0 6701 . . . . . . . . . 10  |-  ( Ord 
A  ->  ( 1o  C_  A  <->  A  =/=  (/) ) )
42, 3syl 16 . . . . . . . . 9  |-  ( A  e.  On  ->  ( 1o  C_  A  <->  A  =/=  (/) ) )
54biimprd 215 . . . . . . . 8  |-  ( A  e.  On  ->  ( A  =/=  (/)  ->  1o  C_  A
) )
65adantr 452 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =/=  (/)  ->  1o  C_  A ) )
7 on0eln0 4596 . . . . . . . . 9  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
87adantl 453 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  e.  B  <->  B  =/=  (/) ) )
9 omword1 6775 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  B )  ->  A  C_  ( A  .o  B ) )
109ex 424 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  e.  B  ->  A  C_  ( A  .o  B ) ) )
118, 10sylbird 227 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  =/=  (/)  ->  A  C_  ( A  .o  B
) ) )
126, 11anim12d 547 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  =/=  (/)  /\  B  =/=  (/) )  -> 
( 1o  C_  A  /\  A  C_  ( A  .o  B ) ) ) )
13 sstr 3316 . . . . . 6  |-  ( ( 1o  C_  A  /\  A  C_  ( A  .o  B ) )  ->  1o  C_  ( A  .o  B ) )
1412, 13syl6 31 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  1o  C_  ( A  .o  B ) ) )
151, 14syl5bir 210 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  ( A  =  (/)  \/  B  =  (/) )  ->  1o  C_  ( A  .o  B
) ) )
16 omcl 6739 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
17 eloni 4551 . . . . 5  |-  ( ( A  .o  B )  e.  On  ->  Ord  ( A  .o  B
) )
18 ordge1n0 6701 . . . . 5  |-  ( Ord  ( A  .o  B
)  ->  ( 1o  C_  ( A  .o  B
)  <->  ( A  .o  B )  =/=  (/) ) )
1916, 17, 183syl 19 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( 1o  C_  ( A  .o  B )  <->  ( A  .o  B )  =/=  (/) ) )
2015, 19sylibd 206 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  ( A  =  (/)  \/  B  =  (/) )  ->  ( A  .o  B )  =/=  (/) ) )
2120necon4bd 2629 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
22 oveq1 6047 . . . . . 6  |-  ( A  =  (/)  ->  ( A  .o  B )  =  ( (/)  .o  B
) )
23 om0r 6742 . . . . . 6  |-  ( B  e.  On  ->  ( (/) 
.o  B )  =  (/) )
2422, 23sylan9eqr 2458 . . . . 5  |-  ( ( B  e.  On  /\  A  =  (/) )  -> 
( A  .o  B
)  =  (/) )
2524ex 424 . . . 4  |-  ( B  e.  On  ->  ( A  =  (/)  ->  ( A  .o  B )  =  (/) ) )
2625adantl 453 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
27 oveq2 6048 . . . . . 6  |-  ( B  =  (/)  ->  ( A  .o  B )  =  ( A  .o  (/) ) )
28 om0 6720 . . . . . 6  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
2927, 28sylan9eqr 2458 . . . . 5  |-  ( ( A  e.  On  /\  B  =  (/) )  -> 
( A  .o  B
)  =  (/) )
3029ex 424 . . . 4  |-  ( A  e.  On  ->  ( B  =  (/)  ->  ( A  .o  B )  =  (/) ) )
3130adantr 452 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
3226, 31jaod 370 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  =  (/)  \/  B  =  (/) )  ->  ( A  .o  B )  =  (/) ) )
3321, 32impbid 184 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567    C_ wss 3280   (/)c0 3588   Ord word 4540   Oncon0 4541  (class class class)co 6040   1oc1o 6676    .o comu 6681
This theorem is referenced by:  om00el  6778  omlimcl  6780  oeoe  6801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688
  Copyright terms: Public domain W3C validator