MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0r Unicode version

Theorem om0r 6533
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om0r  |-  ( A  e.  On  ->  ( (/) 
.o  A )  =  (/) )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem om0r
StepHypRef Expression
1 oveq2 5827 . . 3  |-  ( x  =  (/)  ->  ( (/)  .o  x )  =  (
(/)  .o  (/) ) )
21eqeq1d 2292 . 2  |-  ( x  =  (/)  ->  ( (
(/)  .o  x )  =  (/)  <->  ( (/)  .o  (/) )  =  (/) ) )
3 oveq2 5827 . . 3  |-  ( x  =  y  ->  ( (/) 
.o  x )  =  ( (/)  .o  y
) )
43eqeq1d 2292 . 2  |-  ( x  =  y  ->  (
( (/)  .o  x )  =  (/)  <->  ( (/)  .o  y
)  =  (/) ) )
5 oveq2 5827 . . 3  |-  ( x  =  suc  y  -> 
( (/)  .o  x )  =  ( (/)  .o  suc  y ) )
65eqeq1d 2292 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  .o  x
)  =  (/)  <->  ( (/)  .o  suc  y )  =  (/) ) )
7 oveq2 5827 . . 3  |-  ( x  =  A  ->  ( (/) 
.o  x )  =  ( (/)  .o  A
) )
87eqeq1d 2292 . 2  |-  ( x  =  A  ->  (
( (/)  .o  x )  =  (/)  <->  ( (/)  .o  A
)  =  (/) ) )
9 om0x 6513 . 2  |-  ( (/)  .o  (/) )  =  (/)
10 oveq1 5826 . . 3  |-  ( (
(/)  .o  y )  =  (/)  ->  ( ( (/) 
.o  y )  +o  (/) )  =  ( (/) 
+o  (/) ) )
11 0elon 4444 . . . . 5  |-  (/)  e.  On
12 omsuc 6520 . . . . 5  |-  ( (
(/)  e.  On  /\  y  e.  On )  ->  ( (/) 
.o  suc  y )  =  ( ( (/)  .o  y )  +o  (/) ) )
1311, 12mpan 653 . . . 4  |-  ( y  e.  On  ->  ( (/) 
.o  suc  y )  =  ( ( (/)  .o  y )  +o  (/) ) )
14 oa0 6510 . . . . . . 7  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1511, 14ax-mp 10 . . . . . 6  |-  ( (/)  +o  (/) )  =  (/)
1615eqcomi 2288 . . . . 5  |-  (/)  =  (
(/)  +o  (/) )
1716a1i 12 . . . 4  |-  ( y  e.  On  ->  (/)  =  (
(/)  +o  (/) ) )
1813, 17eqeq12d 2298 . . 3  |-  ( y  e.  On  ->  (
( (/)  .o  suc  y
)  =  (/)  <->  ( ( (/) 
.o  y )  +o  (/) )  =  ( (/) 
+o  (/) ) ) )
1910, 18syl5ibr 214 . 2  |-  ( y  e.  On  ->  (
( (/)  .o  y )  =  (/)  ->  ( (/)  .o 
suc  y )  =  (/) ) )
20 iuneq2 3922 . . . 4  |-  ( A. y  e.  x  ( (/) 
.o  y )  =  (/)  ->  U_ y  e.  x  ( (/)  .o  y )  =  U_ y  e.  x  (/) )
21 iun0 3959 . . . 4  |-  U_ y  e.  x  (/)  =  (/)
2220, 21syl6eq 2332 . . 3  |-  ( A. y  e.  x  ( (/) 
.o  y )  =  (/)  ->  U_ y  e.  x  ( (/)  .o  y )  =  (/) )
23 vex 2792 . . . . 5  |-  x  e. 
_V
24 omlim 6527 . . . . . 6  |-  ( (
(/)  e.  On  /\  (
x  e.  _V  /\  Lim  x ) )  -> 
( (/)  .o  x )  =  U_ y  e.  x  ( (/)  .o  y
) )
2511, 24mpan 653 . . . . 5  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( (/) 
.o  x )  = 
U_ y  e.  x  ( (/)  .o  y ) )
2623, 25mpan 653 . . . 4  |-  ( Lim  x  ->  ( (/)  .o  x
)  =  U_ y  e.  x  ( (/)  .o  y
) )
2726eqeq1d 2292 . . 3  |-  ( Lim  x  ->  ( ( (/) 
.o  x )  =  (/) 
<-> 
U_ y  e.  x  ( (/)  .o  y )  =  (/) ) )
2822, 27syl5ibr 214 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( (/) 
.o  y )  =  (/)  ->  ( (/)  .o  x
)  =  (/) ) )
292, 4, 6, 8, 9, 19, 28tfinds 4649 1  |-  ( A  e.  On  ->  ( (/) 
.o  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   _Vcvv 2789   (/)c0 3456   U_ciun 3906   Oncon0 4391   Lim wlim 4392   suc csuc 4393  (class class class)co 5819    +o coa 6471    .o comu 6472
This theorem is referenced by:  omord  6561  omwordi  6564  om00  6568  odi  6572  omass  6573  oeoa  6590  omxpenlem  6958
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-oadd 6478  df-omul 6479
  Copyright terms: Public domain W3C validator