MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0r Unicode version

Theorem om0r 6538
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om0r  |-  ( A  e.  On  ->  ( (/) 
.o  A )  =  (/) )

Proof of Theorem om0r
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5866 . . 3  |-  ( x  =  (/)  ->  ( (/)  .o  x )  =  (
(/)  .o  (/) ) )
21eqeq1d 2291 . 2  |-  ( x  =  (/)  ->  ( (
(/)  .o  x )  =  (/)  <->  ( (/)  .o  (/) )  =  (/) ) )
3 oveq2 5866 . . 3  |-  ( x  =  y  ->  ( (/) 
.o  x )  =  ( (/)  .o  y
) )
43eqeq1d 2291 . 2  |-  ( x  =  y  ->  (
( (/)  .o  x )  =  (/)  <->  ( (/)  .o  y
)  =  (/) ) )
5 oveq2 5866 . . 3  |-  ( x  =  suc  y  -> 
( (/)  .o  x )  =  ( (/)  .o  suc  y ) )
65eqeq1d 2291 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  .o  x
)  =  (/)  <->  ( (/)  .o  suc  y )  =  (/) ) )
7 oveq2 5866 . . 3  |-  ( x  =  A  ->  ( (/) 
.o  x )  =  ( (/)  .o  A
) )
87eqeq1d 2291 . 2  |-  ( x  =  A  ->  (
( (/)  .o  x )  =  (/)  <->  ( (/)  .o  A
)  =  (/) ) )
9 om0x 6518 . 2  |-  ( (/)  .o  (/) )  =  (/)
10 oveq1 5865 . . 3  |-  ( (
(/)  .o  y )  =  (/)  ->  ( ( (/) 
.o  y )  +o  (/) )  =  ( (/) 
+o  (/) ) )
11 0elon 4445 . . . . 5  |-  (/)  e.  On
12 omsuc 6525 . . . . 5  |-  ( (
(/)  e.  On  /\  y  e.  On )  ->  ( (/) 
.o  suc  y )  =  ( ( (/)  .o  y )  +o  (/) ) )
1311, 12mpan 651 . . . 4  |-  ( y  e.  On  ->  ( (/) 
.o  suc  y )  =  ( ( (/)  .o  y )  +o  (/) ) )
14 oa0 6515 . . . . . . 7  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1511, 14ax-mp 8 . . . . . 6  |-  ( (/)  +o  (/) )  =  (/)
1615eqcomi 2287 . . . . 5  |-  (/)  =  (
(/)  +o  (/) )
1716a1i 10 . . . 4  |-  ( y  e.  On  ->  (/)  =  (
(/)  +o  (/) ) )
1813, 17eqeq12d 2297 . . 3  |-  ( y  e.  On  ->  (
( (/)  .o  suc  y
)  =  (/)  <->  ( ( (/) 
.o  y )  +o  (/) )  =  ( (/) 
+o  (/) ) ) )
1910, 18syl5ibr 212 . 2  |-  ( y  e.  On  ->  (
( (/)  .o  y )  =  (/)  ->  ( (/)  .o 
suc  y )  =  (/) ) )
20 iuneq2 3921 . . . 4  |-  ( A. y  e.  x  ( (/) 
.o  y )  =  (/)  ->  U_ y  e.  x  ( (/)  .o  y )  =  U_ y  e.  x  (/) )
21 iun0 3958 . . . 4  |-  U_ y  e.  x  (/)  =  (/)
2220, 21syl6eq 2331 . . 3  |-  ( A. y  e.  x  ( (/) 
.o  y )  =  (/)  ->  U_ y  e.  x  ( (/)  .o  y )  =  (/) )
23 vex 2791 . . . . 5  |-  x  e. 
_V
24 omlim 6532 . . . . . 6  |-  ( (
(/)  e.  On  /\  (
x  e.  _V  /\  Lim  x ) )  -> 
( (/)  .o  x )  =  U_ y  e.  x  ( (/)  .o  y
) )
2511, 24mpan 651 . . . . 5  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( (/) 
.o  x )  = 
U_ y  e.  x  ( (/)  .o  y ) )
2623, 25mpan 651 . . . 4  |-  ( Lim  x  ->  ( (/)  .o  x
)  =  U_ y  e.  x  ( (/)  .o  y
) )
2726eqeq1d 2291 . . 3  |-  ( Lim  x  ->  ( ( (/) 
.o  x )  =  (/) 
<-> 
U_ y  e.  x  ( (/)  .o  y )  =  (/) ) )
2822, 27syl5ibr 212 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( (/) 
.o  y )  =  (/)  ->  ( (/)  .o  x
)  =  (/) ) )
292, 4, 6, 8, 9, 19, 28tfinds 4650 1  |-  ( A  e.  On  ->  ( (/) 
.o  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   (/)c0 3455   U_ciun 3905   Oncon0 4392   Lim wlim 4393   suc csuc 4394  (class class class)co 5858    +o coa 6476    .o comu 6477
This theorem is referenced by:  omord  6566  omwordi  6569  om00  6573  odi  6577  omass  6578  oeoa  6595  omxpenlem  6963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-omul 6484
  Copyright terms: Public domain W3C validator