MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uz0i Unicode version

Theorem om2uz0i 11174
Description: The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (This series of theorems generalizes an earlier series for  NN0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uz0i  |-  ( G `
 (/) )  =  C
Distinct variable group:    x, C
Allowed substitution hint:    G( x)

Proof of Theorem om2uz0i
StepHypRef Expression
1 om2uz.2 . . 3  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
21fveq1i 5633 . 2  |-  ( G `
 (/) )  =  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om ) `  (/) )
3 om2uz.1 . . 3  |-  C  e.  ZZ
4 fr0g 6590 . . 3  |-  ( C  e.  ZZ  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om ) `  (/) )  =  C )
53, 4ax-mp 8 . 2  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om ) `  (/) )  =  C
62, 5eqtri 2386 1  |-  ( G `
 (/) )  =  C
Colors of variables: wff set class
Syntax hints:    = wceq 1647    e. wcel 1715   _Vcvv 2873   (/)c0 3543    e. cmpt 4179   omcom 4759    |` cres 4794   ` cfv 5358  (class class class)co 5981   reccrdg 6564   1c1 8885    + caddc 8887   ZZcz 10175
This theorem is referenced by:  om2uzuzi  11176  om2uzrani  11179  om2uzrdg  11183  uzrdgxfr  11193  fzennn  11194  axdc4uzlem  11208  hashgadd  11538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-recs 6530  df-rdg 6565
  Copyright terms: Public domain W3C validator