MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlt2i Unicode version

Theorem om2uzlt2i 11016
Description: The mapping  G (see om2uz0i 11012) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzlt2i  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    G( x)

Proof of Theorem om2uzlt2i
StepHypRef Expression
1 om2uz.1 . . 3  |-  C  e.  ZZ
2 om2uz.2 . . 3  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
31, 2om2uzlti 11015 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
41, 2om2uzlti 11015 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( B  e.  A  ->  ( G `  B
)  <  ( G `  A ) ) )
5 fveq2 5527 . . . . . 6  |-  ( B  =  A  ->  ( G `  B )  =  ( G `  A ) )
65a1i 10 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( B  =  A  ->  ( G `  B )  =  ( G `  A ) ) )
74, 6orim12d 811 . . . 4  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( B  e.  A  \/  B  =  A )  ->  (
( G `  B
)  <  ( G `  A )  \/  ( G `  B )  =  ( G `  A ) ) ) )
87ancoms 439 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( B  e.  A  \/  B  =  A )  ->  (
( G `  B
)  <  ( G `  A )  \/  ( G `  B )  =  ( G `  A ) ) ) )
9 nnon 4664 . . . 4  |-  ( B  e.  om  ->  B  e.  On )
10 nnon 4664 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
11 onsseleq 4435 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  C_  A  <->  ( B  e.  A  \/  B  =  A )
) )
12 ontri1 4428 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1311, 12bitr3d 246 . . . 4  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( ( B  e.  A  \/  B  =  A )  <->  -.  A  e.  B ) )
149, 10, 13syl2anr 464 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( B  e.  A  \/  B  =  A )  <->  -.  A  e.  B ) )
151, 2om2uzuzi 11014 . . . . 5  |-  ( B  e.  om  ->  ( G `  B )  e.  ( ZZ>= `  C )
)
16 eluzelre 10241 . . . . 5  |-  ( ( G `  B )  e.  ( ZZ>= `  C
)  ->  ( G `  B )  e.  RR )
1715, 16syl 15 . . . 4  |-  ( B  e.  om  ->  ( G `  B )  e.  RR )
181, 2om2uzuzi 11014 . . . . 5  |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C )
)
19 eluzelre 10241 . . . . 5  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  RR )
2018, 19syl 15 . . . 4  |-  ( A  e.  om  ->  ( G `  A )  e.  RR )
21 leloe 8910 . . . . 5  |-  ( ( ( G `  B
)  e.  RR  /\  ( G `  A )  e.  RR )  -> 
( ( G `  B )  <_  ( G `  A )  <->  ( ( G `  B
)  <  ( G `  A )  \/  ( G `  B )  =  ( G `  A ) ) ) )
22 lenlt 8903 . . . . 5  |-  ( ( ( G `  B
)  e.  RR  /\  ( G `  A )  e.  RR )  -> 
( ( G `  B )  <_  ( G `  A )  <->  -.  ( G `  A
)  <  ( G `  B ) ) )
2321, 22bitr3d 246 . . . 4  |-  ( ( ( G `  B
)  e.  RR  /\  ( G `  A )  e.  RR )  -> 
( ( ( G `
 B )  < 
( G `  A
)  \/  ( G `
 B )  =  ( G `  A
) )  <->  -.  ( G `  A )  <  ( G `  B
) ) )
2417, 20, 23syl2anr 464 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( ( G `
 B )  < 
( G `  A
)  \/  ( G `
 B )  =  ( G `  A
) )  <->  -.  ( G `  A )  <  ( G `  B
) ) )
258, 14, 243imtr3d 258 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  A  e.  B  ->  -.  ( G `  A )  <  ( G `  B
) ) )
263, 25impcon4bid 196 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790    C_ wss 3154   class class class wbr 4025    e. cmpt 4079   Oncon0 4394   omcom 4658    |` cres 4693   ` cfv 5257  (class class class)co 5860   reccrdg 6424   RRcr 8738   1c1 8740    + caddc 8742    < clt 8869    <_ cle 8870   ZZcz 10026   ZZ>=cuz 10232
This theorem is referenced by:  om2uzisoi  11019  unbenlem  12957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-n0 9968  df-z 10027  df-uz 10233
  Copyright terms: Public domain W3C validator