MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcan Unicode version

Theorem omcan 6535
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omcan  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )

Proof of Theorem omcan
StepHypRef Expression
1 omordi 6532 . . . . . . . . 9  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( B  e.  C  ->  ( A  .o  B )  e.  ( A  .o  C ) ) )
21ex 425 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( (/)  e.  A  ->  ( B  e.  C  ->  ( A  .o  B
)  e.  ( A  .o  C ) ) ) )
32ancoms 441 . . . . . . 7  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  A  ->  ( B  e.  C  ->  ( A  .o  B
)  e.  ( A  .o  C ) ) ) )
433adant2 979 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( (/) 
e.  A  ->  ( B  e.  C  ->  ( A  .o  B )  e.  ( A  .o  C ) ) ) )
54imp 420 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( B  e.  C  ->  ( A  .o  B )  e.  ( A  .o  C ) ) )
6 omordi 6532 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( C  e.  B  ->  ( A  .o  C )  e.  ( A  .o  B ) ) )
76ex 425 . . . . . . . 8  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( (/)  e.  A  ->  ( C  e.  B  ->  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
87ancoms 441 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  e.  A  ->  ( C  e.  B  ->  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
983adant3 980 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( (/) 
e.  A  ->  ( C  e.  B  ->  ( A  .o  C )  e.  ( A  .o  B ) ) ) )
109imp 420 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( C  e.  B  ->  ( A  .o  C )  e.  ( A  .o  B ) ) )
115, 10orim12d 814 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( B  e.  C  \/  C  e.  B )  ->  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
1211con3d 127 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( -.  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) )  ->  -.  ( B  e.  C  \/  C  e.  B ) ) )
13 omcl 6503 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
14 eloni 4374 . . . . . . 7  |-  ( ( A  .o  B )  e.  On  ->  Ord  ( A  .o  B
) )
1513, 14syl 17 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  .o  B ) )
16 omcl 6503 . . . . . . 7  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  .o  C
)  e.  On )
17 eloni 4374 . . . . . . 7  |-  ( ( A  .o  C )  e.  On  ->  Ord  ( A  .o  C
) )
1816, 17syl 17 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  On )  ->  Ord  ( A  .o  C ) )
19 ordtri3 4400 . . . . . 6  |-  ( ( Ord  ( A  .o  B )  /\  Ord  ( A  .o  C
) )  ->  (
( A  .o  B
)  =  ( A  .o  C )  <->  -.  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
2015, 18, 19syl2an 465 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( A  e.  On  /\  C  e.  On ) )  -> 
( ( A  .o  B )  =  ( A  .o  C )  <->  -.  ( ( A  .o  B )  e.  ( A  .o  C )  \/  ( A  .o  C )  e.  ( A  .o  B ) ) ) )
21203impdi 1242 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  .o  B
)  =  ( A  .o  C )  <->  -.  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
2221adantr 453 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  -.  ( ( A  .o  B )  e.  ( A  .o  C
)  \/  ( A  .o  C )  e.  ( A  .o  B
) ) ) )
23 eloni 4374 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
24 eloni 4374 . . . . . 6  |-  ( C  e.  On  ->  Ord  C )
25 ordtri3 4400 . . . . . 6  |-  ( ( Ord  B  /\  Ord  C )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B ) ) )
2623, 24, 25syl2an 465 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B
) ) )
27263adant1 978 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B )
) )
2827adantr 453 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B ) ) )
2912, 22, 283imtr4d 261 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
30 oveq2 5800 . 2  |-  ( B  =  C  ->  ( A  .o  B )  =  ( A  .o  C
) )
3129, 30impbid1 196 1  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   (/)c0 3430   Ord word 4363   Oncon0 4364  (class class class)co 5792    .o comu 6445
This theorem is referenced by:  omword  6536  fin1a2lem4  7997
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-recs 6356  df-rdg 6391  df-oadd 6451  df-omul 6452
  Copyright terms: Public domain W3C validator