MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem1 Structured version   Unicode version

Theorem omeulem1 6828
Description: Lemma for omeu 6831: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeulem1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem omeulem1
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 959 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  B  e.  On )
2 sucelon 4800 . . . . . 6  |-  ( B  e.  On  <->  suc  B  e.  On )
31, 2sylib 190 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  suc  B  e.  On )
4 simp1 958 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  A  e.  On )
5 on0eln0 4639 . . . . . . 7  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
65biimpar 473 . . . . . 6  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
763adant2 977 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
8 omword2 6820 . . . . 5  |-  ( ( ( suc  B  e.  On  /\  A  e.  On )  /\  (/)  e.  A
)  ->  suc  B  C_  ( A  .o  suc  B
) )
93, 4, 7, 8syl21anc 1184 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  suc  B 
C_  ( A  .o  suc  B ) )
10 sucidg 4662 . . . . 5  |-  ( B  e.  On  ->  B  e.  suc  B )
11 ssel 3344 . . . . 5  |-  ( suc 
B  C_  ( A  .o  suc  B )  -> 
( B  e.  suc  B  ->  B  e.  ( A  .o  suc  B
) ) )
1210, 11syl5 31 . . . 4  |-  ( suc 
B  C_  ( A  .o  suc  B )  -> 
( B  e.  On  ->  B  e.  ( A  .o  suc  B ) ) )
139, 1, 12sylc 59 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  B  e.  ( A  .o  suc  B ) )
14 suceq 4649 . . . . . 6  |-  ( x  =  B  ->  suc  x  =  suc  B )
1514oveq2d 6100 . . . . 5  |-  ( x  =  B  ->  ( A  .o  suc  x )  =  ( A  .o  suc  B ) )
1615eleq2d 2505 . . . 4  |-  ( x  =  B  ->  ( B  e.  ( A  .o  suc  x )  <->  B  e.  ( A  .o  suc  B
) ) )
1716rspcev 3054 . . 3  |-  ( ( B  e.  On  /\  B  e.  ( A  .o  suc  B ) )  ->  E. x  e.  On  B  e.  ( A  .o  suc  x ) )
181, 13, 17syl2anc 644 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  B  e.  ( A  .o  suc  x
) )
19 suceq 4649 . . . . . 6  |-  ( x  =  z  ->  suc  x  =  suc  z )
2019oveq2d 6100 . . . . 5  |-  ( x  =  z  ->  ( A  .o  suc  x )  =  ( A  .o  suc  z ) )
2120eleq2d 2505 . . . 4  |-  ( x  =  z  ->  ( B  e.  ( A  .o  suc  x )  <->  B  e.  ( A  .o  suc  z
) ) )
2221onminex 4790 . . 3  |-  ( E. x  e.  On  B  e.  ( A  .o  suc  x )  ->  E. x  e.  On  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) ) )
23 vex 2961 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
2423elon 4593 . . . . . . . . . . . . . 14  |-  ( x  e.  On  <->  Ord  x )
25 ordzsl 4828 . . . . . . . . . . . . . 14  |-  ( Ord  x  <->  ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x ) )
2624, 25bitri 242 . . . . . . . . . . . . 13  |-  ( x  e.  On  <->  ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x ) )
27 noel 3634 . . . . . . . . . . . . . . . 16  |-  -.  B  e.  (/)
28 oveq2 6092 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
29 om0x 6766 . . . . . . . . . . . . . . . . . 18  |-  ( A  .o  (/) )  =  (/)
3028, 29syl6eq 2486 . . . . . . . . . . . . . . . . 17  |-  ( x  =  (/)  ->  ( A  .o  x )  =  (/) )
3130eleq2d 2505 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( B  e.  ( A  .o  x )  <->  B  e.  (/) ) )
3227, 31mtbiri 296 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  -.  B  e.  ( A  .o  x
) )
3332a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  =  (/)  ->  -.  B  e.  ( A  .o  x
) ) )
34 simp3 960 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  x  =  suc  w )
35 simp2 959 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )
36 raleq 2906 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  suc  w  -> 
( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  <->  A. z  e.  suc  w  -.  B  e.  ( A  .o  suc  z ) ) )
37 vex 2961 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
3837sucid 4663 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
suc  w
39 suceq 4649 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  w  ->  suc  z  =  suc  w )
4039oveq2d 6100 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  w  ->  ( A  .o  suc  z )  =  ( A  .o  suc  w ) )
4140eleq2d 2505 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  w  ->  ( B  e.  ( A  .o  suc  z )  <->  B  e.  ( A  .o  suc  w
) ) )
4241notbid 287 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  w  ->  ( -.  B  e.  ( A  .o  suc  z )  <->  -.  B  e.  ( A  .o  suc  w ) ) )
4342rspcv 3050 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  suc  w  -> 
( A. z  e. 
suc  w  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) ) )
4438, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( A. z  e.  suc  w  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) )
4536, 44syl6bi 221 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  suc  w  -> 
( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) ) )
4634, 35, 45sylc 59 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  -.  B  e.  ( A  .o  suc  w
) )
47 oveq2 6092 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  suc  w  -> 
( A  .o  x
)  =  ( A  .o  suc  w ) )
4847eleq2d 2505 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  suc  w  -> 
( B  e.  ( A  .o  x )  <-> 
B  e.  ( A  .o  suc  w ) ) )
4948notbid 287 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  suc  w  -> 
( -.  B  e.  ( A  .o  x
)  <->  -.  B  e.  ( A  .o  suc  w
) ) )
5049biimpar 473 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  suc  w  /\  -.  B  e.  ( A  .o  suc  w
) )  ->  -.  B  e.  ( A  .o  x ) )
5134, 46, 50syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  -.  B  e.  ( A  .o  x
) )
52513expia 1156 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  =  suc  w  ->  -.  B  e.  ( A  .o  x ) ) )
5352rexlimdvw 2835 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( E. w  e.  On  x  =  suc  w  ->  -.  B  e.  ( A  .o  x
) ) )
54 ralnex 2717 . . . . . . . . . . . . . . . . . 18  |-  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  <->  -.  E. z  e.  x  B  e.  ( A  .o  suc  z
) )
55 simpr 449 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  A  e.  On )
5623a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  x  e.  _V )
57 simpl 445 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  Lim  x )
58 omlim 6780 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  .o  x )  =  U_ z  e.  x  ( A  .o  z ) )
5955, 56, 57, 58syl12anc 1183 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A  .o  x )  = 
U_ z  e.  x  ( A  .o  z
) )
6059eleq2d 2505 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  ( A  .o  x )  <->  B  e.  U_ z  e.  x  ( A  .o  z ) ) )
61 eliun 4099 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  U_ z  e.  x  ( A  .o  z )  <->  E. z  e.  x  B  e.  ( A  .o  z
) )
62 limord 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Lim  x  ->  Ord  x )
63623ad2ant1 979 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  Ord  x )
6463, 24sylibr 205 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  x  e.  On )
65 simp3 960 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  z  e.  x )
66 onelon 4609 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
6764, 65, 66syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  z  e.  On )
68 suceloni 4796 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  On  ->  suc  z  e.  On )
6967, 68syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  suc  z  e.  On )
70 simp2 959 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  A  e.  On )
71 sssucid 4661 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  z  C_  suc  z
72 omwordi 6817 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  On  /\  suc  z  e.  On  /\  A  e.  On )  ->  ( z  C_  suc  z  ->  ( A  .o  z )  C_  ( A  .o  suc  z
) ) )
7371, 72mpi 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  On  /\  suc  z  e.  On  /\  A  e.  On )  ->  ( A  .o  z )  C_  ( A  .o  suc  z ) )
7467, 69, 70, 73syl3anc 1185 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  ( A  .o  z )  C_  ( A  .o  suc  z
) )
7574sseld 3349 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  ( B  e.  ( A  .o  z )  ->  B  e.  ( A  .o  suc  z ) ) )
76753expia 1156 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  (
z  e.  x  -> 
( B  e.  ( A  .o  z )  ->  B  e.  ( A  .o  suc  z
) ) ) )
7776reximdvai 2818 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( E. z  e.  x  B  e.  ( A  .o  z )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
7861, 77syl5bi 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  U_ z  e.  x  ( A  .o  z )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
7960, 78sylbid 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  ( A  .o  x )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
8079con3d 128 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( -.  E. z  e.  x  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  x ) ) )
8154, 80syl5bi 210 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  x
) ) )
8281expimpd 588 . . . . . . . . . . . . . . . 16  |-  ( Lim  x  ->  ( ( A  e.  On  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  -.  B  e.  ( A  .o  x
) ) )
8382com12 30 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( Lim  x  ->  -.  B  e.  ( A  .o  x ) ) )
84833ad2antl1 1120 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( Lim  x  ->  -.  B  e.  ( A  .o  x ) ) )
8533, 53, 843jaod 1249 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x )  ->  -.  B  e.  ( A  .o  x
) ) )
8626, 85syl5bi 210 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  e.  On  ->  -.  B  e.  ( A  .o  x
) ) )
8786impr 604 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  -.  B  e.  ( A  .o  x ) )
88 simpl1 961 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  A  e.  On )
89 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  x  e.  On )
90 omcl 6783 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  On )
9188, 89, 90syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  ( A  .o  x )  e.  On )
92 simpl2 962 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  B  e.  On )
93 ontri1 4618 . . . . . . . . . . . 12  |-  ( ( ( A  .o  x
)  e.  On  /\  B  e.  On )  ->  ( ( A  .o  x )  C_  B  <->  -.  B  e.  ( A  .o  x ) ) )
9491, 92, 93syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  (
( A  .o  x
)  C_  B  <->  -.  B  e.  ( A  .o  x
) ) )
9587, 94mpbird 225 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  ( A  .o  x )  C_  B )
96 oawordex 6803 . . . . . . . . . . 11  |-  ( ( ( A  .o  x
)  e.  On  /\  B  e.  On )  ->  ( ( A  .o  x )  C_  B  <->  E. y  e.  On  (
( A  .o  x
)  +o  y )  =  B ) )
9791, 92, 96syl2anc 644 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  (
( A  .o  x
)  C_  B  <->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B ) )
9895, 97mpbid 203 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B )
99983adantr1 1117 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B )
100 simp3r 987 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( ( A  .o  x )  +o  y )  =  B )
101 simp21 991 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  B  e.  ( A  .o  suc  x
) )
102 simp11 988 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  A  e.  On )
103 simp23 993 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  x  e.  On )
104 omsuc 6773 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x
)  +o  A ) )
105102, 103, 104syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x )  +o  A
) )
106101, 105eleqtrd 2514 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  B  e.  ( ( A  .o  x )  +o  A
) )
107100, 106eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) )
108 simp3l 986 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  y  e.  On )
109102, 103, 90syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( A  .o  x )  e.  On )
110 oaord 6793 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  A  e.  On  /\  ( A  .o  x )  e.  On )  ->  (
y  e.  A  <->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) ) )
111108, 102, 109, 110syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( y  e.  A  <->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) ) )
112107, 111mpbird 225 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  y  e.  A )
113112, 100jca 520 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( y  e.  A  /\  (
( A  .o  x
)  +o  y )  =  B ) )
1141133expia 1156 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  ( (
y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B )  ->  ( y  e.  A  /\  ( ( A  .o  x )  +o  y )  =  B ) ) )
115114reximdv2 2817 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  ( E. y  e.  On  (
( A  .o  x
)  +o  y )  =  B  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) )
11699, 115mpd 15 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
117116expcom 426 . . . . . 6  |-  ( ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  ->  (
( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) )
1181173expia 1156 . . . . 5  |-  ( ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  -> 
( x  e.  On  ->  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) ) )
119118com13 77 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
x  e.  On  ->  ( ( B  e.  ( A  .o  suc  x
)  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y
)  =  B ) ) )
120119reximdvai 2818 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B ) )
12122, 120syl5 31 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  B  e.  ( A  .o  suc  x )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B ) )
12218, 121mpd 15 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    \/ w3o 936    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    C_ wss 3322   (/)c0 3630   U_ciun 4095   Ord word 4583   Oncon0 4584   Lim wlim 4585   suc csuc 4586  (class class class)co 6084    +o coa 6724    .o comu 6725
This theorem is referenced by:  omeu  6831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-omul 6732
  Copyright terms: Public domain W3C validator