MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Unicode version

Theorem ominf 7071
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf  |-  -.  om  e.  Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 6881 . . 3  |-  ( om  e.  Fin  <->  E. x  e.  om  om  ~~  x
)
2 nnord 4663 . . . . . . . 8  |-  ( x  e.  om  ->  Ord  x )
3 ordom 4664 . . . . . . . 8  |-  Ord  om
4 ordelssne 4418 . . . . . . . 8  |-  ( ( Ord  x  /\  Ord  om )  ->  ( x  e.  om  <->  ( x  C_  om 
/\  x  =/=  om ) ) )
52, 3, 4sylancl 643 . . . . . . 7  |-  ( x  e.  om  ->  (
x  e.  om  <->  ( x  C_ 
om  /\  x  =/=  om ) ) )
65ibi 232 . . . . . 6  |-  ( x  e.  om  ->  (
x  C_  om  /\  x  =/=  om ) )
7 df-pss 3169 . . . . . 6  |-  ( x 
C.  om  <->  ( x  C_  om 
/\  x  =/=  om ) )
86, 7sylibr 203 . . . . 5  |-  ( x  e.  om  ->  x  C.  om )
9 ensym 6906 . . . . 5  |-  ( om 
~~  x  ->  x  ~~  om )
10 pssinf 7069 . . . . 5  |-  ( ( x  C.  om  /\  x  ~~  om )  ->  -.  om  e.  Fin )
118, 9, 10syl2an 463 . . . 4  |-  ( ( x  e.  om  /\  om 
~~  x )  ->  -.  om  e.  Fin )
1211rexlimiva 2663 . . 3  |-  ( E. x  e.  om  om  ~~  x  ->  -.  om  e.  Fin )
131, 12sylbi 187 . 2  |-  ( om  e.  Fin  ->  -.  om  e.  Fin )
14 pm2.01 160 . 2  |-  ( ( om  e.  Fin  ->  -. 
om  e.  Fin )  ->  -.  om  e.  Fin )
1513, 14ax-mp 8 1  |-  -.  om  e.  Fin
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1685    =/= wne 2447   E.wrex 2545    C_ wss 3153    C. wpss 3154   class class class wbr 4024   Ord word 4390   omcom 4655    ~~ cen 6856   Fincfn 6859
This theorem is referenced by:  fineqv  7074  nnsdomg  7112  ackbij1lem18  7859  fin23lem21  7961  fin23lem28  7962  fin23lem30  7964  isfin1-2  8007  uzinf  11024  bitsf1  12633  odhash  14881  ufinffr  17620  diophin  26263  diophren  26307  fiphp3d  26313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863
  Copyright terms: Public domain W3C validator