MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Structured version   Unicode version

Theorem ominf 7313
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf  |-  -.  om  e.  Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 7123 . . 3  |-  ( om  e.  Fin  <->  E. x  e.  om  om  ~~  x
)
2 nnord 4845 . . . . . . . 8  |-  ( x  e.  om  ->  Ord  x )
3 ordom 4846 . . . . . . . 8  |-  Ord  om
4 ordelssne 4600 . . . . . . . 8  |-  ( ( Ord  x  /\  Ord  om )  ->  ( x  e.  om  <->  ( x  C_  om 
/\  x  =/=  om ) ) )
52, 3, 4sylancl 644 . . . . . . 7  |-  ( x  e.  om  ->  (
x  e.  om  <->  ( x  C_ 
om  /\  x  =/=  om ) ) )
65ibi 233 . . . . . 6  |-  ( x  e.  om  ->  (
x  C_  om  /\  x  =/=  om ) )
7 df-pss 3328 . . . . . 6  |-  ( x 
C.  om  <->  ( x  C_  om 
/\  x  =/=  om ) )
86, 7sylibr 204 . . . . 5  |-  ( x  e.  om  ->  x  C.  om )
9 ensym 7148 . . . . 5  |-  ( om 
~~  x  ->  x  ~~  om )
10 pssinf 7311 . . . . 5  |-  ( ( x  C.  om  /\  x  ~~  om )  ->  -.  om  e.  Fin )
118, 9, 10syl2an 464 . . . 4  |-  ( ( x  e.  om  /\  om 
~~  x )  ->  -.  om  e.  Fin )
1211rexlimiva 2817 . . 3  |-  ( E. x  e.  om  om  ~~  x  ->  -.  om  e.  Fin )
131, 12sylbi 188 . 2  |-  ( om  e.  Fin  ->  -.  om  e.  Fin )
14 pm2.01 162 . 2  |-  ( ( om  e.  Fin  ->  -. 
om  e.  Fin )  ->  -.  om  e.  Fin )
1513, 14ax-mp 8 1  |-  -.  om  e.  Fin
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725    =/= wne 2598   E.wrex 2698    C_ wss 3312    C. wpss 3313   class class class wbr 4204   Ord word 4572   omcom 4837    ~~ cen 7098   Fincfn 7101
This theorem is referenced by:  fineqv  7316  nnsdomg  7358  ackbij1lem18  8109  fin23lem21  8211  fin23lem28  8212  fin23lem30  8214  isfin1-2  8257  uzinf  11297  bitsf1  12950  odhash  15200  ufinffr  17953  diophin  26822  diophren  26865  fiphp3d  26871
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105
  Copyright terms: Public domain W3C validator