Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh1N Unicode version

Theorem omlfh1N 28615
Description: Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 22157 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b  |-  B  =  ( Base `  K
)
omlfh1.j  |-  .\/  =  ( join `  K )
omlfh1.m  |-  ./\  =  ( meet `  K )
omlfh1.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
omlfh1N  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  ( Y  .\/  Z ) )  =  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) ) )

Proof of Theorem omlfh1N
StepHypRef Expression
1 omllat 28599 . . . . 5  |-  ( K  e.  OML  ->  K  e.  Lat )
2 omlfh1.b . . . . . 6  |-  B  =  ( Base `  K
)
3 eqid 2258 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
4 omlfh1.j . . . . . 6  |-  .\/  =  ( join `  K )
5 omlfh1.m . . . . . 6  |-  ./\  =  ( meet `  K )
62, 3, 4, 5latledi 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) ( le `  K ) ( X  ./\  ( Y  .\/  Z ) ) )
71, 6sylan 459 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) ( le `  K ) ( X  ./\  ( Y  .\/  Z ) ) )
873adant3 980 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ( le `  K
) ( X  ./\  ( Y  .\/  Z ) ) )
91adantr 453 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
10 simpr1 966 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
11 simpr2 967 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
12 simpr3 968 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
132, 4latjcl 14118 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  e.  B )
149, 11, 12, 13syl3anc 1187 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  e.  B )
152, 5latmcom 14143 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B )  -> 
( X  ./\  ( Y  .\/  Z ) )  =  ( ( Y 
.\/  Z )  ./\  X ) )
169, 10, 14, 15syl3anc 1187 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( Y  .\/  Z ) )  =  ( ( Y  .\/  Z
)  ./\  X )
)
17 omlol 28597 . . . . . . . . 9  |-  ( K  e.  OML  ->  K  e.  OL )
1817adantr 453 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OL )
192, 5latmcl 14119 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
209, 10, 11, 19syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  e.  B )
212, 5latmcl 14119 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  e.  B )
229, 10, 12, 21syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  e.  B )
23 eqid 2258 . . . . . . . . 9  |-  ( oc
`  K )  =  ( oc `  K
)
242, 4, 5, 23oldmj1 28578 . . . . . . . 8  |-  ( ( K  e.  OL  /\  ( X  ./\  Y )  e.  B  /\  ( X  ./\  Z )  e.  B )  ->  (
( oc `  K
) `  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) ) )  =  ( ( ( oc `  K ) `  ( X  ./\  Y ) ) 
./\  ( ( oc
`  K ) `  ( X  ./\  Z ) ) ) )
2518, 20, 22, 24syl3anc 1187 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) ) )  =  ( ( ( oc `  K ) `  ( X  ./\  Y ) ) 
./\  ( ( oc
`  K ) `  ( X  ./\  Z ) ) ) )
262, 4, 5, 23oldmm1 28574 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )
2718, 10, 11, 26syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( X  ./\ 
Y ) )  =  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )
282, 4, 5, 23oldmm1 28574 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Z ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) ) )
2918, 10, 12, 28syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( X  ./\ 
Z ) )  =  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )
3027, 29oveq12d 5810 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  ( X  ./\  Y ) ) 
./\  ( ( oc
`  K ) `  ( X  ./\  Z ) ) )  =  ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )
3125, 30eqtrd 2290 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) ) )  =  ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )
3216, 31oveq12d 5810 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  ( Y  .\/  Z ) ) 
./\  ( ( oc
`  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( ( ( Y  .\/  Z )  ./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )
33323adant3 980 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( ( ( Y  .\/  Z )  ./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )
34 omlop 28598 . . . . . . . . . . 11  |-  ( K  e.  OML  ->  K  e.  OP )
3534adantr 453 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OP )
362, 23opoccl 28551 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
3735, 10, 36syl2anc 645 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  X )  e.  B )
382, 23opoccl 28551 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
3935, 11, 38syl2anc 645 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Y )  e.  B )
402, 4latjcl 14118 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  e.  B
)
419, 37, 39, 40syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) )  e.  B )
422, 23opoccl 28551 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  Z  e.  B )  ->  ( ( oc `  K ) `  Z
)  e.  B )
4335, 12, 42syl2anc 645 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Z )  e.  B )
442, 4latjcl 14118 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) )  e.  B
)
459, 37, 43, 44syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) )  e.  B )
462, 5latmcl 14119 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  e.  B  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
)  e.  B )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  e.  B )
479, 41, 45, 46syl3anc 1187 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) )  e.  B )
482, 5latmassOLD 28586 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( ( Y  .\/  Z )  e.  B  /\  X  e.  B  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  e.  B ) )  ->  ( ( ( Y  .\/  Z ) 
./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( Y  .\/  Z ) 
./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) ) )
4918, 14, 10, 47, 48syl13anc 1189 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( Y  .\/  Z )  ./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( Y  .\/  Z ) 
./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) ) )
50493adant3 980 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( ( Y 
.\/  Z )  ./\  X )  ./\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) )  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) ) )
51 omlfh1.c . . . . . . . . . . . . . 14  |-  C  =  ( cm `  K
)
522, 23, 51cmt2N 28607 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X C ( ( oc `  K ) `
 Y ) ) )
53523adant3r3 1167 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  <->  X C
( ( oc `  K ) `  Y
) ) )
54 simpl 445 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OML )
552, 4, 5, 23, 51cmtbr3N 28611 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( X C ( ( oc `  K ) `  Y
)  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  =  ( X  ./\  ( ( oc `  K ) `  Y ) ) ) )
5654, 10, 39, 55syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C ( ( oc
`  K ) `  Y )  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  =  ( X  ./\  ( ( oc `  K ) `  Y ) ) ) )
5753, 56bitrd 246 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  =  ( X  ./\  ( ( oc `  K ) `  Y ) ) ) )
5857biimpa 472 . . . . . . . . . 10  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X C Y )  ->  ( X  ./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )  =  ( X  ./\  (
( oc `  K
) `  Y )
) )
5958adantrr 700 . . . . . . . . 9  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Y
) ) )
60593impa 1151 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Y
) ) )
612, 23, 51cmt2N 28607 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Z  e.  B )  ->  ( X C Z  <-> 
X C ( ( oc `  K ) `
 Z ) ) )
62613adant3r2 1166 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Z  <->  X C
( ( oc `  K ) `  Z
) ) )
632, 4, 5, 23, 51cmtbr3N 28611 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( X C ( ( oc `  K ) `  Z
)  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )  =  ( X  ./\  ( ( oc `  K ) `  Z ) ) ) )
6454, 10, 43, 63syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C ( ( oc
`  K ) `  Z )  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )  =  ( X  ./\  ( ( oc `  K ) `  Z ) ) ) )
6562, 64bitrd 246 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Z  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )  =  ( X  ./\  ( ( oc `  K ) `  Z ) ) ) )
6665biimpa 472 . . . . . . . . . 10  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X C Z )  ->  ( X  ./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) ) )  =  ( X  ./\  (
( oc `  K
) `  Z )
) )
6766adantrl 699 . . . . . . . . 9  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Z
) ) )
68673impa 1151 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Z
) ) )
6960, 68oveq12d 5810 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  ./\  ( X  ./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( X 
./\  ( ( oc
`  K ) `  Y ) )  ./\  ( X  ./\  ( ( oc `  K ) `
 Z ) ) ) )
702, 5latmmdiN 28591 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( X  e.  B  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  e.  B  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
)  e.  B ) )  ->  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( X  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) ) )  ./\  ( X  ./\  ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
7118, 10, 41, 45, 70syl13anc 1189 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( X  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) ) )  ./\  ( X  ./\  ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
72713adant3 980 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( X 
./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )  ./\  ( X  ./\  ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
732, 5latmmdiN 28591 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( X  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B ) )  ->  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) )  =  ( ( X  ./\  (
( oc `  K
) `  Y )
)  ./\  ( X  ./\  ( ( oc `  K ) `  Z
) ) ) )
7418, 10, 39, 43, 73syl13anc 1189 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  Z
) ) )  =  ( ( X  ./\  ( ( oc `  K ) `  Y
) )  ./\  ( X  ./\  ( ( oc
`  K ) `  Z ) ) ) )
75743adant3 980 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  Y
)  ./\  ( ( oc `  K ) `  Z ) ) )  =  ( ( X 
./\  ( ( oc
`  K ) `  Y ) )  ./\  ( X  ./\  ( ( oc `  K ) `
 Z ) ) ) )
7669, 72, 753eqtr4d 2300 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )
7776oveq2d 5808 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )  =  ( ( Y  .\/  Z
)  ./\  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) ) )
782, 5latmcl 14119 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  Z
) )  e.  B
)
799, 39, 43, 78syl3anc 1187 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  Y
)  ./\  ( ( oc `  K ) `  Z ) )  e.  B )
802, 5latm12 28587 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( ( Y  .\/  Z )  e.  B  /\  X  e.  B  /\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
)  e.  B ) )  ->  ( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) )  =  ( X  ./\  ( ( Y  .\/  Z )  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
8118, 14, 10, 79, 80syl13anc 1189 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
82813adant3 980 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
8350, 77, 823eqtrd 2294 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( ( Y 
.\/  Z )  ./\  X )  ./\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) )  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
842, 4, 5, 23oldmj1 28578 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  ( Y  .\/  Z ) )  =  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  Z
) ) )
8518, 11, 12, 84syl3anc 1187 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( Y  .\/  Z ) )  =  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) )
8685oveq2d 5808 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( ( oc `  K ) `  ( Y  .\/  Z ) ) )  =  ( ( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) )
87 eqid 2258 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
882, 23, 5, 87opnoncon 28565 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( Y  .\/  Z )  e.  B )  -> 
( ( Y  .\/  Z )  ./\  ( ( oc `  K ) `  ( Y  .\/  Z ) ) )  =  ( 0. `  K ) )
8935, 14, 88syl2anc 645 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( ( oc `  K ) `  ( Y  .\/  Z ) ) )  =  ( 0. `  K ) )
9086, 89eqtr3d 2292 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) )  =  ( 0. `  K
) )
9190oveq2d 5808 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( Y 
.\/  Z )  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  ( 0. `  K ) ) )
922, 5, 87olm01 28593 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  ( 0. `  K ) )  =  ( 0. `  K ) )
9318, 10, 92syl2anc 645 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( 0. `  K ) )  =  ( 0. `  K
) )
9491, 93eqtrd 2290 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( Y 
.\/  Z )  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( 0. `  K
) )
95943adant3 980 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) )  =  ( 0. `  K ) )
9633, 83, 953eqtrd 2294 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( 0. `  K ) )
972, 4latjcl 14118 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  ./\  Y )  e.  B  /\  ( X  ./\  Z )  e.  B )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  e.  B )
989, 20, 22, 97syl3anc 1187 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  e.  B )
992, 5latmcl 14119 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B )  -> 
( X  ./\  ( Y  .\/  Z ) )  e.  B )
1009, 10, 14, 99syl3anc 1187 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( Y  .\/  Z ) )  e.  B
)
1012, 3, 5, 23, 87omllaw3 28602 . . . . 5  |-  ( ( K  e.  OML  /\  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) )  e.  B  /\  ( X  ./\  ( Y  .\/  Z ) )  e.  B
)  ->  ( (
( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ( le `  K
) ( X  ./\  ( Y  .\/  Z ) )  /\  ( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) ) )  =  ( 0.
`  K ) )  ->  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) )  =  ( X 
./\  ( Y  .\/  Z ) ) ) )
10254, 98, 100, 101syl3anc 1187 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) ) ( le `  K ) ( X 
./\  ( Y  .\/  Z ) )  /\  (
( X  ./\  ( Y  .\/  Z ) ) 
./\  ( ( oc
`  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( 0. `  K ) )  ->  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) )  =  ( X 
./\  ( Y  .\/  Z ) ) ) )
1031023adant3 980 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( ( ( X  ./\  Y )  .\/  ( X  ./\  Z
) ) ( le
`  K ) ( X  ./\  ( Y  .\/  Z ) )  /\  ( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( 0. `  K ) )  ->  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) )  =  ( X 
./\  ( Y  .\/  Z ) ) ) )
1048, 96, 103mp2and 663 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  Y )  .\/  ( X 
./\  Z ) )  =  ( X  ./\  ( Y  .\/  Z ) ) )
105104eqcomd 2263 1  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  ( Y  .\/  Z ) )  =  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   Basecbs 13110   lecple 13177   occoc 13178   joincjn 14040   meetcmee 14041   0.cp0 14105   Latclat 14113   OPcops 28529   cmccmtN 28530   OLcol 28531   OMLcoml 28532
This theorem is referenced by:  omlfh3N  28616  omlmod1i2N  28617
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14042  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-lat 14114  df-oposet 28533  df-cmtN 28534  df-ol 28535  df-oml 28536
  Copyright terms: Public domain W3C validator