Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh1N Unicode version

Theorem omlfh1N 30070
Description: Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 22213 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b  |-  B  =  ( Base `  K
)
omlfh1.j  |-  .\/  =  ( join `  K )
omlfh1.m  |-  ./\  =  ( meet `  K )
omlfh1.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
omlfh1N  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  ( Y  .\/  Z ) )  =  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) ) )

Proof of Theorem omlfh1N
StepHypRef Expression
1 omllat 30054 . . . . 5  |-  ( K  e.  OML  ->  K  e.  Lat )
2 omlfh1.b . . . . . 6  |-  B  =  ( Base `  K
)
3 eqid 2296 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
4 omlfh1.j . . . . . 6  |-  .\/  =  ( join `  K )
5 omlfh1.m . . . . . 6  |-  ./\  =  ( meet `  K )
62, 3, 4, 5latledi 14211 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) ( le `  K ) ( X  ./\  ( Y  .\/  Z ) ) )
71, 6sylan 457 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) ( le `  K ) ( X  ./\  ( Y  .\/  Z ) ) )
873adant3 975 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ( le `  K
) ( X  ./\  ( Y  .\/  Z ) ) )
91adantr 451 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
10 simpr1 961 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
11 simpr2 962 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
12 simpr3 963 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
132, 4latjcl 14172 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  e.  B )
149, 11, 12, 13syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  e.  B )
152, 5latmcom 14197 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B )  -> 
( X  ./\  ( Y  .\/  Z ) )  =  ( ( Y 
.\/  Z )  ./\  X ) )
169, 10, 14, 15syl3anc 1182 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( Y  .\/  Z ) )  =  ( ( Y  .\/  Z
)  ./\  X )
)
17 omlol 30052 . . . . . . . . 9  |-  ( K  e.  OML  ->  K  e.  OL )
1817adantr 451 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OL )
192, 5latmcl 14173 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
209, 10, 11, 19syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  e.  B )
212, 5latmcl 14173 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  e.  B )
229, 10, 12, 21syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Z )  e.  B )
23 eqid 2296 . . . . . . . . 9  |-  ( oc
`  K )  =  ( oc `  K
)
242, 4, 5, 23oldmj1 30033 . . . . . . . 8  |-  ( ( K  e.  OL  /\  ( X  ./\  Y )  e.  B  /\  ( X  ./\  Z )  e.  B )  ->  (
( oc `  K
) `  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) ) )  =  ( ( ( oc `  K ) `  ( X  ./\  Y ) ) 
./\  ( ( oc
`  K ) `  ( X  ./\  Z ) ) ) )
2518, 20, 22, 24syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) ) )  =  ( ( ( oc `  K ) `  ( X  ./\  Y ) ) 
./\  ( ( oc
`  K ) `  ( X  ./\  Z ) ) ) )
262, 4, 5, 23oldmm1 30029 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )
2718, 10, 11, 26syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( X  ./\ 
Y ) )  =  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )
282, 4, 5, 23oldmm1 30029 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Z ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) ) )
2918, 10, 12, 28syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( X  ./\ 
Z ) )  =  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )
3027, 29oveq12d 5892 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  ( X  ./\  Y ) ) 
./\  ( ( oc
`  K ) `  ( X  ./\  Z ) ) )  =  ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )
3125, 30eqtrd 2328 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) ) )  =  ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )
3216, 31oveq12d 5892 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  ( Y  .\/  Z ) ) 
./\  ( ( oc
`  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( ( ( Y  .\/  Z )  ./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )
33323adant3 975 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( ( ( Y  .\/  Z )  ./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )
34 omlop 30053 . . . . . . . . . . 11  |-  ( K  e.  OML  ->  K  e.  OP )
3534adantr 451 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OP )
362, 23opoccl 30006 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
3735, 10, 36syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  X )  e.  B )
382, 23opoccl 30006 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
3935, 11, 38syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Y )  e.  B )
402, 4latjcl 14172 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  e.  B
)
419, 37, 39, 40syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) )  e.  B )
422, 23opoccl 30006 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  Z  e.  B )  ->  ( ( oc `  K ) `  Z
)  e.  B )
4335, 12, 42syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Z )  e.  B )
442, 4latjcl 14172 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) )  e.  B
)
459, 37, 43, 44syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) )  e.  B )
462, 5latmcl 14173 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  e.  B  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
)  e.  B )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  e.  B )
479, 41, 45, 46syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) )  e.  B )
482, 5latmassOLD 30041 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( ( Y  .\/  Z )  e.  B  /\  X  e.  B  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  e.  B ) )  ->  ( ( ( Y  .\/  Z ) 
./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( Y  .\/  Z ) 
./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) ) )
4918, 14, 10, 47, 48syl13anc 1184 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( Y  .\/  Z )  ./\  X )  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( Y  .\/  Z ) 
./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) ) )
50493adant3 975 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( ( Y 
.\/  Z )  ./\  X )  ./\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) )  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) ) )
51 omlfh1.c . . . . . . . . . . . . . 14  |-  C  =  ( cm `  K
)
522, 23, 51cmt2N 30062 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X C ( ( oc `  K ) `
 Y ) ) )
53523adant3r3 1162 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  <->  X C
( ( oc `  K ) `  Y
) ) )
54 simpl 443 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OML )
552, 4, 5, 23, 51cmtbr3N 30066 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( X C ( ( oc `  K ) `  Y
)  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  =  ( X  ./\  ( ( oc `  K ) `  Y ) ) ) )
5654, 10, 39, 55syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C ( ( oc
`  K ) `  Y )  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  =  ( X  ./\  ( ( oc `  K ) `  Y ) ) ) )
5753, 56bitrd 244 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  =  ( X  ./\  ( ( oc `  K ) `  Y ) ) ) )
5857biimpa 470 . . . . . . . . . 10  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X C Y )  ->  ( X  ./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )  =  ( X  ./\  (
( oc `  K
) `  Y )
) )
5958adantrr 697 . . . . . . . . 9  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Y
) ) )
60593impa 1146 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Y
) ) )
612, 23, 51cmt2N 30062 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Z  e.  B )  ->  ( X C Z  <-> 
X C ( ( oc `  K ) `
 Z ) ) )
62613adant3r2 1161 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Z  <->  X C
( ( oc `  K ) `  Z
) ) )
632, 4, 5, 23, 51cmtbr3N 30066 . . . . . . . . . . . . 13  |-  ( ( K  e.  OML  /\  X  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( X C ( ( oc `  K ) `  Z
)  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )  =  ( X  ./\  ( ( oc `  K ) `  Z ) ) ) )
6454, 10, 43, 63syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C ( ( oc
`  K ) `  Z )  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )  =  ( X  ./\  ( ( oc `  K ) `  Z ) ) ) )
6562, 64bitrd 244 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Z  <->  ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) )  =  ( X  ./\  ( ( oc `  K ) `  Z ) ) ) )
6665biimpa 470 . . . . . . . . . 10  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X C Z )  ->  ( X  ./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) ) )  =  ( X  ./\  (
( oc `  K
) `  Z )
) )
6766adantrl 696 . . . . . . . . 9  |-  ( ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Z
) ) )
68673impa 1146 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) )  =  ( X  ./\  ( ( oc `  K ) `  Z
) ) )
6960, 68oveq12d 5892 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
) )  ./\  ( X  ./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( X 
./\  ( ( oc
`  K ) `  Y ) )  ./\  ( X  ./\  ( ( oc `  K ) `
 Z ) ) ) )
702, 5latmmdiN 30046 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( X  e.  B  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  e.  B  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
)  e.  B ) )  ->  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( X  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) ) )  ./\  ( X  ./\  ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
7118, 10, 41, 45, 70syl13anc 1184 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( X  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Y
) ) )  ./\  ( X  ./\  ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
72713adant3 975 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( X 
./\  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )  ./\  ( X  ./\  ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
732, 5latmmdiN 30046 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( X  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B ) )  ->  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) )  =  ( ( X  ./\  (
( oc `  K
) `  Y )
)  ./\  ( X  ./\  ( ( oc `  K ) `  Z
) ) ) )
7418, 10, 39, 43, 73syl13anc 1184 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  Z
) ) )  =  ( ( X  ./\  ( ( oc `  K ) `  Y
) )  ./\  ( X  ./\  ( ( oc
`  K ) `  Z ) ) ) )
75743adant3 975 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( oc `  K ) `  Y
)  ./\  ( ( oc `  K ) `  Z ) ) )  =  ( ( X 
./\  ( ( oc
`  K ) `  Y ) )  ./\  ( X  ./\  ( ( oc `  K ) `
 Z ) ) ) )
7669, 72, 753eqtr4d 2338 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  ./\  ( (
( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )
7776oveq2d 5890 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  ./\  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )  =  ( ( Y  .\/  Z
)  ./\  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) ) )
782, 5latmcl 14173 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  Z
) )  e.  B
)
799, 39, 43, 78syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  Y
)  ./\  ( ( oc `  K ) `  Z ) )  e.  B )
802, 5latm12 30042 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( ( Y  .\/  Z )  e.  B  /\  X  e.  B  /\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
)  e.  B ) )  ->  ( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) )  =  ( X  ./\  ( ( Y  .\/  Z )  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
8118, 14, 10, 79, 80syl13anc 1184 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
82813adant3 975 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( Y  .\/  Z )  ./\  ( X  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
8350, 77, 823eqtrd 2332 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( ( Y 
.\/  Z )  ./\  X )  ./\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  Y ) )  ./\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
842, 4, 5, 23oldmj1 30033 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  ( Y  .\/  Z ) )  =  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  Z
) ) )
8518, 11, 12, 84syl3anc 1182 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( Y  .\/  Z ) )  =  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) )
8685oveq2d 5890 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( ( oc `  K ) `  ( Y  .\/  Z ) ) )  =  ( ( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) )
87 eqid 2296 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
882, 23, 5, 87opnoncon 30020 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( Y  .\/  Z )  e.  B )  -> 
( ( Y  .\/  Z )  ./\  ( ( oc `  K ) `  ( Y  .\/  Z ) ) )  =  ( 0. `  K ) )
8935, 14, 88syl2anc 642 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( ( oc `  K ) `  ( Y  .\/  Z ) ) )  =  ( 0. `  K ) )
9086, 89eqtr3d 2330 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) )  =  ( 0. `  K
) )
9190oveq2d 5890 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( Y 
.\/  Z )  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( X  ./\  ( 0. `  K ) ) )
922, 5, 87olm01 30048 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  ( 0. `  K ) )  =  ( 0. `  K ) )
9318, 10, 92syl2anc 642 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( 0. `  K ) )  =  ( 0. `  K
) )
9491, 93eqtrd 2328 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( ( Y 
.\/  Z )  ./\  ( ( ( oc
`  K ) `  Y )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( 0. `  K
) )
95943adant3 975 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  (
( Y  .\/  Z
)  ./\  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  Z
) ) ) )  =  ( 0. `  K ) )
9633, 83, 953eqtrd 2332 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( 0. `  K ) )
972, 4latjcl 14172 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  ./\  Y )  e.  B  /\  ( X  ./\  Z )  e.  B )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  e.  B )
989, 20, 22, 97syl3anc 1182 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) )  e.  B )
992, 5latmcl 14173 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B )  -> 
( X  ./\  ( Y  .\/  Z ) )  e.  B )
1009, 10, 14, 99syl3anc 1182 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  ( Y  .\/  Z ) )  e.  B
)
1012, 3, 5, 23, 87omllaw3 30057 . . . . 5  |-  ( ( K  e.  OML  /\  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) )  e.  B  /\  ( X  ./\  ( Y  .\/  Z ) )  e.  B
)  ->  ( (
( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ( le `  K
) ( X  ./\  ( Y  .\/  Z ) )  /\  ( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  (
( X  ./\  Y
)  .\/  ( X  ./\ 
Z ) ) ) )  =  ( 0.
`  K ) )  ->  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) )  =  ( X 
./\  ( Y  .\/  Z ) ) ) )
10254, 98, 100, 101syl3anc 1182 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) ) ( le `  K ) ( X 
./\  ( Y  .\/  Z ) )  /\  (
( X  ./\  ( Y  .\/  Z ) ) 
./\  ( ( oc
`  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( 0. `  K ) )  ->  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) )  =  ( X 
./\  ( Y  .\/  Z ) ) ) )
1031023adant3 975 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( ( ( X  ./\  Y )  .\/  ( X  ./\  Z
) ) ( le
`  K ) ( X  ./\  ( Y  .\/  Z ) )  /\  ( ( X  ./\  ( Y  .\/  Z ) )  ./\  ( ( oc `  K ) `  ( ( X  ./\  Y )  .\/  ( X 
./\  Z ) ) ) )  =  ( 0. `  K ) )  ->  ( ( X  ./\  Y )  .\/  ( X  ./\  Z ) )  =  ( X 
./\  ( Y  .\/  Z ) ) ) )
1048, 96, 103mp2and 660 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  ./\  Y )  .\/  ( X 
./\  Z ) )  =  ( X  ./\  ( Y  .\/  Z ) ) )
105104eqcomd 2301 1  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  ./\  ( Y  .\/  Z ) )  =  ( ( X 
./\  Y )  .\/  ( X  ./\  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   occoc 13232   joincjn 14094   meetcmee 14095   0.cp0 14159   Latclat 14167   OPcops 29984   cmccmtN 29985   OLcol 29986   OMLcoml 29987
This theorem is referenced by:  omlfh3N  30071  omlmod1i2N  30072
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-oposet 29988  df-cmtN 29989  df-ol 29990  df-oml 29991
  Copyright terms: Public domain W3C validator