MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omlim Unicode version

Theorem omlim 6486
Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omlim  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem omlim
StepHypRef Expression
1 limelon 4413 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 simpr 449 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  Lim  B )
31, 2jca 520 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( B  e.  On  /\  Lim  B ) )
4 rdglim2a 6400 . . . 4  |-  ( ( B  e.  On  /\  Lim  B )  ->  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  x )
)
54adantl 454 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) )
6 omv 6465 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B ) )
7 onelon 4375 . . . . . . . 8  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 omv 6465 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) )
97, 8sylan2 462 . . . . . . 7  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  ( A  .o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) )
109anassrs 632 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  ( A  .o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) )
1110iuneq2dv 3886 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  ( A  .o  x
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) )
126, 11eqeq12d 2270 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x )  <->  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  x )
) )
1312adantrr 700 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( ( A  .o  B )  = 
U_ x  e.  B  ( A  .o  x
)  <->  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) ) )
145, 13mpbird 225 . 2  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
153, 14sylan2 462 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2757   (/)c0 3416   U_ciun 3865    e. cmpt 4037   Oncon0 4350   Lim wlim 4351   ` cfv 4659  (class class class)co 5778   reccrdg 6376    +o coa 6430    .o comu 6431
This theorem is referenced by:  omcl  6489  om0r  6492  om1r  6495  omordi  6518  omwordri  6524  omordlim  6529  omlimcl  6530  odi  6531  omass  6532  omeulem1  6534  oeoalem  6548  oeoelem  6550  omabslem  6598  omabs  6599
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-recs 6342  df-rdg 6377  df-omul 6438
  Copyright terms: Public domain W3C validator