Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw2N Unicode version

Theorem omllaw2N 29507
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 22166 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw.b  |-  B  =  ( Base `  K
)
omllaw.l  |-  .<_  =  ( le `  K )
omllaw.j  |-  .\/  =  ( join `  K )
omllaw.m  |-  ./\  =  ( meet `  K )
omllaw.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw2N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( X  .\/  (
(  ._|_  `  X )  ./\  Y ) )  =  Y ) )

Proof of Theorem omllaw2N
StepHypRef Expression
1 omllaw.b . . 3  |-  B  =  ( Base `  K
)
2 omllaw.l . . 3  |-  .<_  =  ( le `  K )
3 omllaw.j . . 3  |-  .\/  =  ( join `  K )
4 omllaw.m . . 3  |-  ./\  =  ( meet `  K )
5 omllaw.o . . 3  |-  ._|_  =  ( oc `  K )
61, 2, 3, 4, 5omllaw 29506 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  Y  =  ( X  .\/  ( Y  ./\  (  ._|_  `  X ) ) ) ) )
7 eqcom 2287 . . 3  |-  ( ( X  .\/  ( ( 
._|_  `  X )  ./\  Y ) )  =  Y  <-> 
Y  =  ( X 
.\/  ( (  ._|_  `  X )  ./\  Y
) ) )
8 omllat 29505 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  Lat )
983ad2ant1 976 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
10 omlop 29504 . . . . . . . 8  |-  ( K  e.  OML  ->  K  e.  OP )
111, 5opoccl 29457 . . . . . . . 8  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
1210, 11sylan 457 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
13123adant3 975 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
14 simp3 957 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
151, 4latmcom 14183 . . . . . 6  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  Y  e.  B )  ->  (
(  ._|_  `  X )  ./\  Y )  =  ( Y  ./\  (  ._|_  `  X ) ) )
169, 13, 14, 15syl3anc 1182 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  Y )  =  ( Y  ./\  (  ._|_  `  X )
) )
1716oveq2d 5876 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  Y ) )  =  ( X  .\/  ( Y  ./\  (  ._|_  `  X
) ) ) )
1817eqeq2d 2296 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  =  ( X  .\/  ( ( 
._|_  `  X )  ./\  Y ) )  <->  Y  =  ( X  .\/  ( Y 
./\  (  ._|_  `  X
) ) ) ) )
197, 18syl5bb 248 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .\/  ( (  ._|_  `  X
)  ./\  Y )
)  =  Y  <->  Y  =  ( X  .\/  ( Y 
./\  (  ._|_  `  X
) ) ) ) )
206, 19sylibrd 225 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( X  .\/  (
(  ._|_  `  X )  ./\  Y ) )  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Basecbs 13150   lecple 13217   occoc 13218   joincjn 14080   meetcmee 14081   Latclat 14153   OPcops 29435   OMLcoml 29438
This theorem is referenced by:  omllaw5N  29510  cmtcomlemN  29511  cmtbr3N  29517
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-meet 14113  df-lat 14154  df-oposet 29439  df-ol 29441  df-oml 29442
  Copyright terms: Public domain W3C validator