Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw4 Unicode version

Theorem omllaw4 28715
Description: Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw4.b  |-  B  =  ( Base `  K
)
omllaw4.l  |-  .<_  =  ( le `  K )
omllaw4.m  |-  ./\  =  ( meet `  K )
omllaw4.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  =  X ) )

Proof of Theorem omllaw4
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
2 omlop 28710 . . . . 5  |-  ( K  e.  OML  ->  K  e.  OP )
323ad2ant1 976 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
4 simp3 957 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
5 omllaw4.b . . . . 5  |-  B  =  ( Base `  K
)
6 omllaw4.o . . . . 5  |-  ._|_  =  ( oc `  K )
75, 6opoccl 28663 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
83, 4, 7syl2anc 642 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
9 simp2 956 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
105, 6opoccl 28663 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
113, 9, 10syl2anc 642 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
12 omllaw4.l . . . 4  |-  .<_  =  ( le `  K )
13 eqid 2284 . . . 4  |-  ( join `  K )  =  (
join `  K )
14 omllaw4.m . . . 4  |-  ./\  =  ( meet `  K )
155, 12, 13, 14, 6omllaw 28712 . . 3  |-  ( ( K  e.  OML  /\  (  ._|_  `  Y )  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  (
(  ._|_  `  Y )  .<_  (  ._|_  `  X )  ->  (  ._|_  `  X
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
161, 8, 11, 15syl3anc 1182 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<_  (  ._|_  `  X
)  ->  (  ._|_  `  X )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) ) )
175, 12, 6oplecon3b 28669 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
182, 17syl3an1 1215 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
19 omllat 28711 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  Lat )
20193ad2ant1 976 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
215, 14latmcl 14153 . . . . . . 7  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  Y  e.  B )  ->  (
(  ._|_  `  X )  ./\  Y )  e.  B
)
2220, 11, 4, 21syl3anc 1182 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  Y )  e.  B )
235, 6opoccl 28663 . . . . . 6  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B )  ->  (  ._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  e.  B
)
243, 22, 23syl2anc 642 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  X )  ./\  Y ) )  e.  B
)
255, 14latmcl 14153 . . . . 5  |-  ( ( K  e.  Lat  /\  (  ._|_  `  ( (  ._|_  `  X )  ./\  Y ) )  e.  B  /\  Y  e.  B
)  ->  ( (  ._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
)  e.  B )
2620, 24, 4, 25syl3anc 1182 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  e.  B )
275, 6opcon3b 28665 . . . 4  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  e.  B  /\  X  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) ) ) )
283, 26, 9, 27syl3anc 1182 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) ) ) )
295, 13latjcom 14161 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (
( (  ._|_  `  X
)  ./\  Y )
( join `  K )
(  ._|_  `  Y )
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  Y )
) )
3020, 22, 8, 29syl3anc 1182 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  X )  ./\  Y
) ( join `  K
) (  ._|_  `  Y
) )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  Y
) ) )
31 omlol 28709 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  OL )
32313ad2ant1 976 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
335, 13, 14, 6oldmm2 28687 . . . . . 6  |-  ( ( K  e.  OL  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )
)  =  ( ( (  ._|_  `  X ) 
./\  Y ) (
join `  K )
(  ._|_  `  Y )
) )
3432, 22, 4, 33syl3anc 1182 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
) )  =  ( ( (  ._|_  `  X
)  ./\  Y )
( join `  K )
(  ._|_  `  Y )
) )
355, 6opococ 28664 . . . . . . . 8  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
363, 4, 35syl2anc 642 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
3736oveq2d 5836 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) )  =  ( (  ._|_  `  X ) 
./\  Y ) )
3837oveq2d 5836 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) )  =  ( (  ._|_  `  Y ) ( join `  K ) ( ( 
._|_  `  X )  ./\  Y ) ) )
3930, 34, 383eqtr4d 2326 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
) )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) )
4039eqeq2d 2295 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) )  <->  (  ._|_  `  X )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) ) )
4128, 40bitrd 244 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
4216, 18, 413imtr4d 259 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Basecbs 13144   lecple 13211   occoc 13212   joincjn 14074   meetcmee 14075   Latclat 14147   OPcops 28641   OLcol 28643   OMLcoml 28644
This theorem is referenced by:  poml4N  29421  dihoml4c  30845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-lat 14148  df-oposet 28645  df-ol 28647  df-oml 28648
  Copyright terms: Public domain W3C validator