Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw4 Unicode version

Theorem omllaw4 28686
Description: Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw4.b  |-  B  =  ( Base `  K
)
omllaw4.l  |-  .<_  =  ( le `  K )
omllaw4.m  |-  ./\  =  ( meet `  K )
omllaw4.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  =  X ) )

Proof of Theorem omllaw4
StepHypRef Expression
1 simp1 960 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
2 omlop 28681 . . . . 5  |-  ( K  e.  OML  ->  K  e.  OP )
323ad2ant1 981 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
4 simp3 962 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
5 omllaw4.b . . . . 5  |-  B  =  ( Base `  K
)
6 omllaw4.o . . . . 5  |-  ._|_  =  ( oc `  K )
75, 6opoccl 28634 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
83, 4, 7syl2anc 645 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
9 simp2 961 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
105, 6opoccl 28634 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
113, 9, 10syl2anc 645 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
12 omllaw4.l . . . 4  |-  .<_  =  ( le `  K )
13 eqid 2258 . . . 4  |-  ( join `  K )  =  (
join `  K )
14 omllaw4.m . . . 4  |-  ./\  =  ( meet `  K )
155, 12, 13, 14, 6omllaw 28683 . . 3  |-  ( ( K  e.  OML  /\  (  ._|_  `  Y )  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  (
(  ._|_  `  Y )  .<_  (  ._|_  `  X )  ->  (  ._|_  `  X
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
161, 8, 11, 15syl3anc 1187 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<_  (  ._|_  `  X
)  ->  (  ._|_  `  X )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) ) )
175, 12, 6oplecon3b 28640 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
182, 17syl3an1 1220 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
19 omllat 28682 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  Lat )
20193ad2ant1 981 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
215, 14latmcl 14120 . . . . . . 7  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  Y  e.  B )  ->  (
(  ._|_  `  X )  ./\  Y )  e.  B
)
2220, 11, 4, 21syl3anc 1187 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  Y )  e.  B )
235, 6opoccl 28634 . . . . . 6  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B )  ->  (  ._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  e.  B
)
243, 22, 23syl2anc 645 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  X )  ./\  Y ) )  e.  B
)
255, 14latmcl 14120 . . . . 5  |-  ( ( K  e.  Lat  /\  (  ._|_  `  ( (  ._|_  `  X )  ./\  Y ) )  e.  B  /\  Y  e.  B
)  ->  ( (  ._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
)  e.  B )
2620, 24, 4, 25syl3anc 1187 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  e.  B )
275, 6opcon3b 28636 . . . 4  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  e.  B  /\  X  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) ) ) )
283, 26, 9, 27syl3anc 1187 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) ) ) )
295, 13latjcom 14128 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (
( (  ._|_  `  X
)  ./\  Y )
( join `  K )
(  ._|_  `  Y )
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  Y )
) )
3020, 22, 8, 29syl3anc 1187 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  X )  ./\  Y
) ( join `  K
) (  ._|_  `  Y
) )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  Y
) ) )
31 omlol 28680 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  OL )
32313ad2ant1 981 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
335, 13, 14, 6oldmm2 28658 . . . . . 6  |-  ( ( K  e.  OL  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )
)  =  ( ( (  ._|_  `  X ) 
./\  Y ) (
join `  K )
(  ._|_  `  Y )
) )
3432, 22, 4, 33syl3anc 1187 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
) )  =  ( ( (  ._|_  `  X
)  ./\  Y )
( join `  K )
(  ._|_  `  Y )
) )
355, 6opococ 28635 . . . . . . . 8  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
363, 4, 35syl2anc 645 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
3736oveq2d 5808 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) )  =  ( (  ._|_  `  X ) 
./\  Y ) )
3837oveq2d 5808 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) )  =  ( (  ._|_  `  Y ) ( join `  K ) ( ( 
._|_  `  X )  ./\  Y ) ) )
3930, 34, 383eqtr4d 2300 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
) )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) )
4039eqeq2d 2269 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) )  <->  (  ._|_  `  X )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) ) )
4128, 40bitrd 246 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
4216, 18, 413imtr4d 261 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   Basecbs 13111   lecple 13178   occoc 13179   joincjn 14041   meetcmee 14042   Latclat 14114   OPcops 28612   OLcol 28614   OMLcoml 28615
This theorem is referenced by:  poml4N  29392  dihoml4c  30816
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14043  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-lat 14115  df-oposet 28616  df-ol 28618  df-oml 28619
  Copyright terms: Public domain W3C validator