Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw5N Structured version   Unicode version

Theorem omllaw5N 29982
Description: The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 23107 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw5.b  |-  B  =  ( Base `  K
)
omllaw5.j  |-  .\/  =  ( join `  K )
omllaw5.m  |-  ./\  =  ( meet `  K )
omllaw5.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw5N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  ( X  .\/  Y
) ) )  =  ( X  .\/  Y
) )

Proof of Theorem omllaw5N
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
2 simp2 958 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 omllat 29977 . . . 4  |-  ( K  e.  OML  ->  K  e.  Lat )
4 omllaw5.b . . . . 5  |-  B  =  ( Base `  K
)
5 omllaw5.j . . . . 5  |-  .\/  =  ( join `  K )
64, 5latjcl 14471 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
73, 6syl3an1 1217 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
81, 2, 73jca 1134 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B ) )
9 eqid 2435 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
104, 9, 5latlej1 14481 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
113, 10syl3an1 1217 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
12 omllaw5.m . . 3  |-  ./\  =  ( meet `  K )
13 omllaw5.o . . 3  |-  ._|_  =  ( oc `  K )
144, 9, 5, 12, 13omllaw2N 29979 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B )  -> 
( X ( le
`  K ) ( X  .\/  Y )  ->  ( X  .\/  ( (  ._|_  `  X
)  ./\  ( X  .\/  Y ) ) )  =  ( X  .\/  Y ) ) )
158, 11, 14sylc 58 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  ( X  .\/  Y
) ) )  =  ( X  .\/  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   occoc 13529   joincjn 14393   meetcmee 14394   Latclat 14466   OMLcoml 29910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-lub 14423  df-join 14425  df-meet 14426  df-lat 14467  df-oposet 29911  df-ol 29913  df-oml 29914
  Copyright terms: Public domain W3C validator