HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsilem Unicode version

Theorem omlsilem 21942
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsilem.1  |-  G  e.  SH
omlsilem.2  |-  H  e.  SH
omlsilem.3  |-  G  C_  H
omlsilem.4  |-  ( H  i^i  ( _|_ `  G
) )  =  0H
omlsilem.5  |-  A  e.  H
omlsilem.6  |-  B  e.  G
omlsilem.7  |-  C  e.  ( _|_ `  G
)
Assertion
Ref Expression
omlsilem  |-  ( A  =  ( B  +h  C )  ->  A  e.  G )

Proof of Theorem omlsilem
StepHypRef Expression
1 omlsilem.2 . . . . . . . . . 10  |-  H  e.  SH
2 omlsilem.5 . . . . . . . . . 10  |-  A  e.  H
31, 2shelii 21755 . . . . . . . . 9  |-  A  e. 
~H
4 omlsilem.1 . . . . . . . . . 10  |-  G  e.  SH
5 omlsilem.6 . . . . . . . . . 10  |-  B  e.  G
64, 5shelii 21755 . . . . . . . . 9  |-  B  e. 
~H
7 shocss 21826 . . . . . . . . . . 11  |-  ( G  e.  SH  ->  ( _|_ `  G )  C_  ~H )
84, 7ax-mp 10 . . . . . . . . . 10  |-  ( _|_ `  G )  C_  ~H
9 omlsilem.7 . . . . . . . . . 10  |-  C  e.  ( _|_ `  G
)
108, 9sselii 3152 . . . . . . . . 9  |-  C  e. 
~H
113, 6, 10hvsubaddi 21606 . . . . . . . 8  |-  ( ( A  -h  B )  =  C  <->  ( B  +h  C )  =  A )
12 eqcom 2260 . . . . . . . 8  |-  ( ( B  +h  C )  =  A  <->  A  =  ( B  +h  C
) )
1311, 12bitri 242 . . . . . . 7  |-  ( ( A  -h  B )  =  C  <->  A  =  ( B  +h  C
) )
14 omlsilem.3 . . . . . . . . . 10  |-  G  C_  H
1514, 5sselii 3152 . . . . . . . . 9  |-  B  e.  H
16 shsubcl 21761 . . . . . . . . 9  |-  ( ( H  e.  SH  /\  A  e.  H  /\  B  e.  H )  ->  ( A  -h  B
)  e.  H )
171, 2, 15, 16mp3an 1282 . . . . . . . 8  |-  ( A  -h  B )  e.  H
18 eleq1 2318 . . . . . . . 8  |-  ( ( A  -h  B )  =  C  ->  (
( A  -h  B
)  e.  H  <->  C  e.  H ) )
1917, 18mpbii 204 . . . . . . 7  |-  ( ( A  -h  B )  =  C  ->  C  e.  H )
2013, 19sylbir 206 . . . . . 6  |-  ( A  =  ( B  +h  C )  ->  C  e.  H )
21 omlsilem.4 . . . . . . . . 9  |-  ( H  i^i  ( _|_ `  G
) )  =  0H
2221eleq2i 2322 . . . . . . . 8  |-  ( C  e.  ( H  i^i  ( _|_ `  G ) )  <->  C  e.  0H )
23 elin 3333 . . . . . . . 8  |-  ( C  e.  ( H  i^i  ( _|_ `  G ) )  <->  ( C  e.  H  /\  C  e.  ( _|_ `  G
) ) )
24 elch0 21794 . . . . . . . 8  |-  ( C  e.  0H  <->  C  =  0h )
2522, 23, 243bitr3i 268 . . . . . . 7  |-  ( ( C  e.  H  /\  C  e.  ( _|_ `  G ) )  <->  C  =  0h )
2625biimpi 188 . . . . . 6  |-  ( ( C  e.  H  /\  C  e.  ( _|_ `  G ) )  ->  C  =  0h )
2720, 9, 26sylancl 646 . . . . 5  |-  ( A  =  ( B  +h  C )  ->  C  =  0h )
2827oveq2d 5808 . . . 4  |-  ( A  =  ( B  +h  C )  ->  ( B  +h  C )  =  ( B  +h  0h ) )
29 ax-hvaddid 21545 . . . . 5  |-  ( B  e.  ~H  ->  ( B  +h  0h )  =  B )
306, 29ax-mp 10 . . . 4  |-  ( B  +h  0h )  =  B
3128, 30syl6eq 2306 . . 3  |-  ( A  =  ( B  +h  C )  ->  ( B  +h  C )  =  B )
3231, 5syl6eqel 2346 . 2  |-  ( A  =  ( B  +h  C )  ->  ( B  +h  C )  e.  G )
33 eleq1 2318 . 2  |-  ( A  =  ( B  +h  C )  ->  ( A  e.  G  <->  ( B  +h  C )  e.  G
) )
3432, 33mpbird 225 1  |-  ( A  =  ( B  +h  C )  ->  A  e.  G )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    i^i cin 3126    C_ wss 3127   ` cfv 4673  (class class class)co 5792   ~Hchil 21460    +h cva 21461   0hc0v 21465    -h cmv 21466   SHcsh 21469   _|_cort 21471   0Hc0h 21476
This theorem is referenced by:  omlsii  21943
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-hilex 21540  ax-hfvadd 21541  ax-hvcom 21542  ax-hvass 21543  ax-hv0cl 21544  ax-hvaddid 21545  ax-hfvmul 21546  ax-hvmulid 21547  ax-hvdistr2 21550  ax-hvmul0 21551  ax-hfi 21619  ax-his2 21623  ax-his3 21624
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-ltxr 8840  df-sub 9007  df-neg 9008  df-hvsub 21512  df-sh 21747  df-oc 21792  df-ch0 21793
  Copyright terms: Public domain W3C validator