MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthi Unicode version

Theorem omopthi 6742
Description: An ordered pair theorem for  om. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 11378. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopth.1  |-  A  e. 
om
omopth.2  |-  B  e. 
om
omopth.3  |-  C  e. 
om
omopth.4  |-  D  e. 
om
Assertion
Ref Expression
omopthi  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem omopthi
StepHypRef Expression
1 omopth.1 . . . . . . . . . . . . 13  |-  A  e. 
om
2 omopth.2 . . . . . . . . . . . . 13  |-  B  e. 
om
31, 2nnacli 6699 . . . . . . . . . . . 12  |-  ( A  +o  B )  e. 
om
43nnoni 4745 . . . . . . . . . . 11  |-  ( A  +o  B )  e.  On
54onordi 4579 . . . . . . . . . 10  |-  Ord  ( A  +o  B )
6 omopth.3 . . . . . . . . . . . . 13  |-  C  e. 
om
7 omopth.4 . . . . . . . . . . . . 13  |-  D  e. 
om
86, 7nnacli 6699 . . . . . . . . . . . 12  |-  ( C  +o  D )  e. 
om
98nnoni 4745 . . . . . . . . . . 11  |-  ( C  +o  D )  e.  On
109onordi 4579 . . . . . . . . . 10  |-  Ord  ( C  +o  D )
11 ordtri3 4510 . . . . . . . . . 10  |-  ( ( Ord  ( A  +o  B )  /\  Ord  ( C  +o  D
) )  ->  (
( A  +o  B
)  =  ( C  +o  D )  <->  -.  (
( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) ) ) )
125, 10, 11mp2an 653 . . . . . . . . 9  |-  ( ( A  +o  B )  =  ( C  +o  D )  <->  -.  (
( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) ) )
1312con2bii 322 . . . . . . . 8  |-  ( ( ( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) )  <->  -.  ( A  +o  B
)  =  ( C  +o  D ) )
141, 2, 8, 7omopthlem2 6741 . . . . . . . . . 10  |-  ( ( A  +o  B )  e.  ( C  +o  D )  ->  -.  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B ) )
15 eqcom 2360 . . . . . . . . . 10  |-  ( ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  =  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  <->  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) )
1614, 15sylnib 295 . . . . . . . . 9  |-  ( ( A  +o  B )  e.  ( C  +o  D )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
176, 7, 3, 2omopthlem2 6741 . . . . . . . . 9  |-  ( ( C  +o  D )  e.  ( A  +o  B )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
1816, 17jaoi 368 . . . . . . . 8  |-  ( ( ( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) )  ->  -.  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
) )
1913, 18sylbir 204 . . . . . . 7  |-  ( -.  ( A  +o  B
)  =  ( C  +o  D )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
2019con4i 122 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( A  +o  B )  =  ( C  +o  D ) )
21 id 19 . . . . . . . . 9  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
) )
2220, 20oveq12d 5963 . . . . . . . . . 10  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( ( A  +o  B )  .o  ( A  +o  B
) )  =  ( ( C  +o  D
)  .o  ( C  +o  D ) ) )
2322oveq1d 5960 . . . . . . . . 9  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  D )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
) )
2421, 23eqtr4d 2393 . . . . . . . 8  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  D
) )
253, 3nnmcli 6700 . . . . . . . . 9  |-  ( ( A  +o  B )  .o  ( A  +o  B ) )  e. 
om
26 nnacan 6713 . . . . . . . . 9  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  e.  om  /\  B  e.  om  /\  D  e. 
om )  ->  (
( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  D )  <->  B  =  D ) )
2725, 2, 7, 26mp3an 1277 . . . . . . . 8  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  D
)  <->  B  =  D
)
2824, 27sylib 188 . . . . . . 7  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  B  =  D )
2928oveq2d 5961 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( C  +o  B )  =  ( C  +o  D ) )
3020, 29eqtr4d 2393 . . . . 5  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( A  +o  B )  =  ( C  +o  B ) )
31 nnacom 6702 . . . . . 6  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( B  +o  A
)  =  ( A  +o  B ) )
322, 1, 31mp2an 653 . . . . 5  |-  ( B  +o  A )  =  ( A  +o  B
)
33 nnacom 6702 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
342, 6, 33mp2an 653 . . . . 5  |-  ( B  +o  C )  =  ( C  +o  B
)
3530, 32, 343eqtr4g 2415 . . . 4  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( B  +o  A )  =  ( B  +o  C ) )
36 nnacan 6713 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  (
( B  +o  A
)  =  ( B  +o  C )  <->  A  =  C ) )
372, 1, 6, 36mp3an 1277 . . . 4  |-  ( ( B  +o  A )  =  ( B  +o  C )  <->  A  =  C )
3835, 37sylib 188 . . 3  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  A  =  C )
3938, 28jca 518 . 2  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( A  =  C  /\  B  =  D ) )
40 oveq12 5954 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +o  B
)  =  ( C  +o  D ) )
4140, 40oveq12d 5963 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  +o  B )  .o  ( A  +o  B ) )  =  ( ( C  +o  D )  .o  ( C  +o  D
) ) )
42 simpr 447 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  B  =  D )
4341, 42oveq12d 5963 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
4439, 43impbii 180 1  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1642    e. wcel 1710   Ord word 4473   omcom 4738  (class class class)co 5945    +o coa 6563    .o comu 6564
This theorem is referenced by:  omopth  6743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-omul 6571
  Copyright terms: Public domain W3C validator