MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omordi Unicode version

Theorem omordi 6559
Description: Ordering property of ordinal multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omordi  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem omordi
StepHypRef Expression
1 onelon 4416 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21ex 425 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  e.  On ) )
3 eleq2 2345 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
4 oveq2 5827 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( C  .o  x )  =  ( C  .o  (/) ) )
54eleq2d 2351 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( C  .o  A )  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
63, 5imbi12d 313 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( A  e.  x  -> 
( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  (/)  ->  ( C  .o  A
)  e.  ( C  .o  (/) ) ) ) )
7 eleq2 2345 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
8 oveq2 5827 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( C  .o  x )  =  ( C  .o  y
) )
98eleq2d 2351 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  y ) ) )
107, 9imbi12d 313 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )
11 eleq2 2345 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
12 oveq2 5827 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( C  .o  x
)  =  ( C  .o  suc  y ) )
1312eleq2d 2351 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( ( C  .o  A )  e.  ( C  .o  x )  <-> 
( C  .o  A
)  e.  ( C  .o  suc  y ) ) )
1411, 13imbi12d 313 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) )  <->  ( A  e. 
suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) )
15 eleq2 2345 . . . . . . . . . 10  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
16 oveq2 5827 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( C  .o  x )  =  ( C  .o  B
) )
1716eleq2d 2351 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
1815, 17imbi12d 313 . . . . . . . . 9  |-  ( x  =  B  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
19 noel 3460 . . . . . . . . . . 11  |-  -.  A  e.  (/)
2019pm2.21i 125 . . . . . . . . . 10  |-  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) )
2120a1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
22 elsuci 4457 . . . . . . . . . . . . . . 15  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
23 omcl 6530 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  .o  y
)  e.  On )
24 simpl 445 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  y  e.  On )  ->  C  e.  On )
2523, 24jca 520 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( ( C  .o  y )  e.  On  /\  C  e.  On ) )
26 oaword1 6545 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( C  .o  y
)  C_  ( ( C  .o  y )  +o  C ) )
2726sseld 3180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
2827imim2d 50 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) ) )
2928imp 420 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C ) ) )
3029adantrl 698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
31 oaord1 6544 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  y )  e.  ( ( C  .o  y )  +o  C ) ) )
3231biimpa 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) )
33 oveq2 5827 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  =  y  ->  ( C  .o  A )  =  ( C  .o  y
) )
3433eleq1d 2350 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  y  ->  (
( C  .o  A
)  e.  ( ( C  .o  y )  +o  C )  <->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) ) )
3532, 34syl5ibrcom 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
3635adantrr 699 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
3730, 36jaod 371 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
3825, 37sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
3922, 38syl5 30 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
40 omsuc 6520 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  .o  suc  y )  =  ( ( C  .o  y
)  +o  C ) )
4140eleq2d 2351 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4241adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4339, 42sylibrd 227 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) )
4443exp43 597 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  (
y  e.  On  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4544com12 29 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4645adantld 455 . . . . . . . . . 10  |-  ( y  e.  On  ->  (
( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4746imp3a 422 . . . . . . . . 9  |-  ( y  e.  On  ->  (
( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) ) ) )
48 id 21 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  e.  On  /\  Lim  x ) )
4948ad2ant2r 729 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C ) )  ->  ( C  e.  On  /\  Lim  x
) )
50 limsuc 4639 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
5150biimpa 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  A  e.  x )  ->  suc  A  e.  x )
52 oveq2 5827 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  suc  A  -> 
( C  .o  y
)  =  ( C  .o  suc  A ) )
5352ssiun2s 3947 . . . . . . . . . . . . . . . . . 18  |-  ( suc 
A  e.  x  -> 
( C  .o  suc  A )  C_  U_ y  e.  x  ( C  .o  y ) )
5451, 53syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( C  .o  suc  A ) 
C_  U_ y  e.  x  ( C  .o  y
) )
5554adantll 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  suc  A )  C_  U_ y  e.  x  ( C  .o  y ) )
56 vex 2792 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
57 omlim 6527 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( C  .o  x )  =  U_ y  e.  x  ( C  .o  y ) )
5856, 57mpanr1 666 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  .o  x )  = 
U_ y  e.  x  ( C  .o  y
) )
5958adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  x
)  =  U_ y  e.  x  ( C  .o  y ) )
6055, 59sseqtr4d 3216 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  suc  A )  C_  ( C  .o  x ) )
6149, 60sylan 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  suc  A ) 
C_  ( C  .o  x ) )
62 omcl 6530 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  A
)  e.  On )
63 oaord1 6544 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  A
)  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6462, 63sylan 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6564anabss1 789 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6665biimpa 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( ( C  .o  A
)  +o  C ) )
67 omsuc 6520 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  suc  A )  =  ( ( C  .o  A )  +o  C ) )
6867adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  suc  A )  =  ( ( C  .o  A
)  +o  C ) )
6966, 68eleqtrrd 2361 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( C  .o  suc  A
) )
7069adantrl 698 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C ) )  ->  ( C  .o  A )  e.  ( C  .o  suc  A
) )
7170adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  A )  e.  ( C  .o  suc  A ) )
7261, 71sseldd 3182 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  A )  e.  ( C  .o  x
) )
7372exp53 602 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  ( A  e.  On  ->  ( Lim  x  ->  ( (/) 
e.  C  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) ) ) )
7473com13 76 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( A  e.  On  ->  ( C  e.  On  ->  ( (/)  e.  C  ->  ( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) ) ) ) ) )
7574imp4c 576 . . . . . . . . . 10  |-  ( Lim  x  ->  ( (
( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) )
7675a1dd 44 . . . . . . . . 9  |-  ( Lim  x  ->  ( (
( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y
) )  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) ) )
776, 10, 14, 18, 21, 47, 76tfinds3 4654 . . . . . . . 8  |-  ( B  e.  On  ->  (
( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B
) ) ) )
7877com23 74 . . . . . . 7  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( ( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
7978exp4a 591 . . . . . 6  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( ( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
8079exp4a 591 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( A  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
812, 80mpdd 38 . . . 4  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8281com34 79 . . 3  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
(/)  e.  C  ->  ( C  e.  On  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8382com24 83 . 2  |-  ( B  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( A  e.  B  -> 
( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
8483imp31 423 1  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   _Vcvv 2789    C_ wss 3153   (/)c0 3456   U_ciun 3906   Oncon0 4391   Lim wlim 4392   suc csuc 4393  (class class class)co 5819    +o coa 6471    .o comu 6472
This theorem is referenced by:  omord2  6560  omcan  6562  odi  6572  omass  6573  oen0  6579  oeordi  6580  oeordsuc  6587
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-recs 6383  df-rdg 6418  df-oadd 6478  df-omul 6479
  Copyright terms: Public domain W3C validator