MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omordi Unicode version

Theorem omordi 6580
Description: Ordering property of ordinal multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omordi  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )

Proof of Theorem omordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 4433 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21ex 423 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  e.  On ) )
3 eleq2 2357 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
4 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( C  .o  x )  =  ( C  .o  (/) ) )
54eleq2d 2363 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( C  .o  A )  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
63, 5imbi12d 311 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( A  e.  x  -> 
( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  (/)  ->  ( C  .o  A
)  e.  ( C  .o  (/) ) ) ) )
7 eleq2 2357 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
8 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( C  .o  x )  =  ( C  .o  y
) )
98eleq2d 2363 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  y ) ) )
107, 9imbi12d 311 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )
11 eleq2 2357 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
12 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( C  .o  x
)  =  ( C  .o  suc  y ) )
1312eleq2d 2363 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( ( C  .o  A )  e.  ( C  .o  x )  <-> 
( C  .o  A
)  e.  ( C  .o  suc  y ) ) )
1411, 13imbi12d 311 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) )  <->  ( A  e. 
suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) )
15 eleq2 2357 . . . . . . . . . 10  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
16 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( C  .o  x )  =  ( C  .o  B
) )
1716eleq2d 2363 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
1815, 17imbi12d 311 . . . . . . . . 9  |-  ( x  =  B  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
19 noel 3472 . . . . . . . . . . 11  |-  -.  A  e.  (/)
2019pm2.21i 123 . . . . . . . . . 10  |-  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) )
2120a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
22 elsuci 4474 . . . . . . . . . . . . . . 15  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
23 omcl 6551 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  .o  y
)  e.  On )
24 simpl 443 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  y  e.  On )  ->  C  e.  On )
2523, 24jca 518 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( ( C  .o  y )  e.  On  /\  C  e.  On ) )
26 oaword1 6566 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( C  .o  y
)  C_  ( ( C  .o  y )  +o  C ) )
2726sseld 3192 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
2827imim2d 48 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) ) )
2928imp 418 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C ) ) )
3029adantrl 696 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
31 oaord1 6565 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  y )  e.  ( ( C  .o  y )  +o  C ) ) )
3231biimpa 470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) )
33 oveq2 5882 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  =  y  ->  ( C  .o  A )  =  ( C  .o  y
) )
3433eleq1d 2362 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  y  ->  (
( C  .o  A
)  e.  ( ( C  .o  y )  +o  C )  <->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) ) )
3532, 34syl5ibrcom 213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
3635adantrr 697 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
3730, 36jaod 369 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
3825, 37sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
3922, 38syl5 28 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
40 omsuc 6541 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  .o  suc  y )  =  ( ( C  .o  y
)  +o  C ) )
4140eleq2d 2363 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4241adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4339, 42sylibrd 225 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) )
4443exp43 595 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  (
y  e.  On  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4544com12 27 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4645adantld 453 . . . . . . . . . 10  |-  ( y  e.  On  ->  (
( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4746imp3a 420 . . . . . . . . 9  |-  ( y  e.  On  ->  (
( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) ) ) )
48 id 19 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  e.  On  /\  Lim  x ) )
4948ad2ant2r 727 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C ) )  ->  ( C  e.  On  /\  Lim  x
) )
50 limsuc 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
5150biimpa 470 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  A  e.  x )  ->  suc  A  e.  x )
52 oveq2 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  suc  A  -> 
( C  .o  y
)  =  ( C  .o  suc  A ) )
5352ssiun2s 3962 . . . . . . . . . . . . . . . . . 18  |-  ( suc 
A  e.  x  -> 
( C  .o  suc  A )  C_  U_ y  e.  x  ( C  .o  y ) )
5451, 53syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( C  .o  suc  A ) 
C_  U_ y  e.  x  ( C  .o  y
) )
5554adantll 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  suc  A )  C_  U_ y  e.  x  ( C  .o  y ) )
56 vex 2804 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
57 omlim 6548 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( C  .o  x )  =  U_ y  e.  x  ( C  .o  y ) )
5856, 57mpanr1 664 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  .o  x )  = 
U_ y  e.  x  ( C  .o  y
) )
5958adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  x
)  =  U_ y  e.  x  ( C  .o  y ) )
6055, 59sseqtr4d 3228 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  suc  A )  C_  ( C  .o  x ) )
6149, 60sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  suc  A ) 
C_  ( C  .o  x ) )
62 omcl 6551 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  A
)  e.  On )
63 oaord1 6565 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  A
)  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6462, 63sylan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6564anabss1 787 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6665biimpa 470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( ( C  .o  A
)  +o  C ) )
67 omsuc 6541 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  suc  A )  =  ( ( C  .o  A )  +o  C ) )
6867adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  suc  A )  =  ( ( C  .o  A
)  +o  C ) )
6966, 68eleqtrrd 2373 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( C  .o  suc  A
) )
7069adantrl 696 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C ) )  ->  ( C  .o  A )  e.  ( C  .o  suc  A
) )
7170adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  A )  e.  ( C  .o  suc  A ) )
7261, 71sseldd 3194 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  A )  e.  ( C  .o  x
) )
7372exp53 600 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  ( A  e.  On  ->  ( Lim  x  ->  ( (/) 
e.  C  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) ) ) )
7473com13 74 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( A  e.  On  ->  ( C  e.  On  ->  ( (/)  e.  C  ->  ( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) ) ) ) ) )
7574imp4c 574 . . . . . . . . . 10  |-  ( Lim  x  ->  ( (
( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) )
7675a1dd 42 . . . . . . . . 9  |-  ( Lim  x  ->  ( (
( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y
) )  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) ) )
776, 10, 14, 18, 21, 47, 76tfinds3 4671 . . . . . . . 8  |-  ( B  e.  On  ->  (
( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B
) ) ) )
7877com23 72 . . . . . . 7  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( ( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
7978exp4a 589 . . . . . 6  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( ( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
8079exp4a 589 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( A  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
812, 80mpdd 36 . . . 4  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8281com34 77 . . 3  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
(/)  e.  C  ->  ( C  e.  On  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8382com24 81 . 2  |-  ( B  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( A  e.  B  -> 
( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
8483imp31 421 1  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   (/)c0 3468   U_ciun 3921   Oncon0 4408   Lim wlim 4409   suc csuc 4410  (class class class)co 5874    +o coa 6492    .o comu 6493
This theorem is referenced by:  omord2  6581  omcan  6583  odi  6593  omass  6594  oen0  6600  oeordi  6601  oeordsuc  6608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-oadd 6499  df-omul 6500
  Copyright terms: Public domain W3C validator