MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omssnlim Unicode version

Theorem omssnlim 4672
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omssnlim  |-  om  C_  { x  e.  On  |  -.  Lim  x }

Proof of Theorem omssnlim
StepHypRef Expression
1 omsson 4662 . 2  |-  om  C_  On
2 nnlim 4671 . . 3  |-  ( x  e.  om  ->  -.  Lim  x )
32rgen 2610 . 2  |-  A. x  e.  om  -.  Lim  x
4 ssrab 3253 . 2  |-  ( om  C_  { x  e.  On  |  -.  Lim  x }  <->  ( om  C_  On  /\  A. x  e.  om  -.  Lim  x ) )
51, 3, 4mpbir2an 886 1  |-  om  C_  { x  e.  On  |  -.  Lim  x }
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wral 2545   {crab 2549    C_ wss 3154   Oncon0 4394   Lim wlim 4395   omcom 4658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4307  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659
  Copyright terms: Public domain W3C validator