MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omssnlim Unicode version

Theorem omssnlim 4642
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omssnlim  |-  om  C_  { x  e.  On  |  -.  Lim  x }

Proof of Theorem omssnlim
StepHypRef Expression
1 omsson 4632 . 2  |-  om  C_  On
2 nnlim 4641 . . 3  |-  ( x  e.  om  ->  -.  Lim  x )
32rgen 2583 . 2  |-  A. x  e.  om  -.  Lim  x
4 ssrab 3226 . 2  |-  ( om  C_  { x  e.  On  |  -.  Lim  x }  <->  ( om  C_  On  /\  A. x  e.  om  -.  Lim  x ) )
51, 3, 4mpbir2an 891 1  |-  om  C_  { x  e.  On  |  -.  Lim  x }
Colors of variables: wff set class
Syntax hints:   -. wn 5   A.wral 2518   {crab 2522    C_ wss 3127   Oncon0 4364   Lim wlim 4365   omcom 4628
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-tr 4088  df-eprel 4277  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629
  Copyright terms: Public domain W3C validator