MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordri Structured version   Unicode version

Theorem omwordri 6807
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
Assertion
Ref Expression
omwordri  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  ->  ( A  .o  C )  C_  ( B  .o  C
) ) )

Proof of Theorem omwordri
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6081 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
2 oveq2 6081 . . . . . 6  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
31, 2sseq12d 3369 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  x ) 
C_  ( B  .o  x )  <->  ( A  .o  (/) )  C_  ( B  .o  (/) ) ) )
4 oveq2 6081 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
5 oveq2 6081 . . . . . 6  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
64, 5sseq12d 3369 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  x
)  C_  ( B  .o  x )  <->  ( A  .o  y )  C_  ( B  .o  y ) ) )
7 oveq2 6081 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
8 oveq2 6081 . . . . . 6  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
97, 8sseq12d 3369 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  C_  ( B  .o  x )  <->  ( A  .o  suc  y )  C_  ( B  .o  suc  y
) ) )
10 oveq2 6081 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  x )  =  ( A  .o  C
) )
11 oveq2 6081 . . . . . 6  |-  ( x  =  C  ->  ( B  .o  x )  =  ( B  .o  C
) )
1210, 11sseq12d 3369 . . . . 5  |-  ( x  =  C  ->  (
( A  .o  x
)  C_  ( B  .o  x )  <->  ( A  .o  C )  C_  ( B  .o  C ) ) )
13 om0 6753 . . . . . . 7  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
14 0ss 3648 . . . . . . 7  |-  (/)  C_  ( B  .o  (/) )
1513, 14syl6eqss 3390 . . . . . 6  |-  ( A  e.  On  ->  ( A  .o  (/) )  C_  ( B  .o  (/) ) )
1615ad2antrr 707 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( A  .o  (/) )  C_  ( B  .o  (/) ) )
17 omcl 6772 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  .o  y
)  e.  On )
18173adant2 976 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  .o  y )  e.  On )
19 omcl 6772 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  y
)  e.  On )
20193adant1 975 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  .o  y )  e.  On )
21 simp1 957 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  A  e.  On )
22 oawordri 6785 . . . . . . . . . . . . 13  |-  ( ( ( A  .o  y
)  e.  On  /\  ( B  .o  y
)  e.  On  /\  A  e.  On )  ->  ( ( A  .o  y )  C_  ( B  .o  y )  -> 
( ( A  .o  y )  +o  A
)  C_  ( ( B  .o  y )  +o  A ) ) )
2318, 20, 21, 22syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  (
( A  .o  y
)  C_  ( B  .o  y )  ->  (
( A  .o  y
)  +o  A ) 
C_  ( ( B  .o  y )  +o  A ) ) )
2423imp 419 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  .o  y
)  C_  ( B  .o  y ) )  -> 
( ( A  .o  y )  +o  A
)  C_  ( ( B  .o  y )  +o  A ) )
2524adantrl 697 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  .o  y
)  C_  ( B  .o  y ) ) )  ->  ( ( A  .o  y )  +o  A )  C_  (
( B  .o  y
)  +o  A ) )
26 oaword 6784 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( B  .o  y )  e.  On )  ->  ( A  C_  B  <->  ( ( B  .o  y )  +o  A )  C_  (
( B  .o  y
)  +o  B ) ) )
2720, 26syld3an3 1229 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  C_  B  <->  ( ( B  .o  y )  +o  A )  C_  (
( B  .o  y
)  +o  B ) ) )
2827biimpa 471 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  A  C_  B )  ->  ( ( B  .o  y )  +o  A )  C_  (
( B  .o  y
)  +o  B ) )
2928adantrr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  .o  y
)  C_  ( B  .o  y ) ) )  ->  ( ( B  .o  y )  +o  A )  C_  (
( B  .o  y
)  +o  B ) )
3025, 29sstrd 3350 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  .o  y
)  C_  ( B  .o  y ) ) )  ->  ( ( A  .o  y )  +o  A )  C_  (
( B  .o  y
)  +o  B ) )
31 omsuc 6762 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
32313adant2 976 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y )  +o  A ) )
3332adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  .o  y
)  C_  ( B  .o  y ) ) )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
34 omsuc 6762 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
35343adant1 975 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y )  +o  B ) )
3635adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  .o  y
)  C_  ( B  .o  y ) ) )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
3730, 33, 363sstr4d 3383 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  .o  y
)  C_  ( B  .o  y ) ) )  ->  ( A  .o  suc  y )  C_  ( B  .o  suc  y ) )
3837exp520 1174 . . . . . . 7  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( A  C_  B  ->  ( ( A  .o  y
)  C_  ( B  .o  y )  ->  ( A  .o  suc  y ) 
C_  ( B  .o  suc  y ) ) ) ) ) )
3938com3r 75 . . . . . 6  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( B  e.  On  ->  ( A  C_  B  ->  ( ( A  .o  y
)  C_  ( B  .o  y )  ->  ( A  .o  suc  y ) 
C_  ( B  .o  suc  y ) ) ) ) ) )
4039imp4c 575 . . . . 5  |-  ( y  e.  On  ->  (
( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B )  ->  (
( A  .o  y
)  C_  ( B  .o  y )  ->  ( A  .o  suc  y ) 
C_  ( B  .o  suc  y ) ) ) )
41 vex 2951 . . . . . . . 8  |-  x  e. 
_V
42 ss2iun 4100 . . . . . . . . . 10  |-  ( A. y  e.  x  ( A  .o  y )  C_  ( B  .o  y
)  ->  U_ y  e.  x  ( A  .o  y )  C_  U_ y  e.  x  ( B  .o  y ) )
43 omlim 6769 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  .o  x )  =  U_ y  e.  x  ( A  .o  y ) )
4443ad2ant2rl 730 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  ( B  e.  On  /\  ( x  e.  _V  /\  Lim  x ) ) )  ->  ( A  .o  x )  =  U_ y  e.  x  ( A  .o  y ) )
45 omlim 6769 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( B  .o  x )  =  U_ y  e.  x  ( B  .o  y ) )
4645adantl 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  ( B  e.  On  /\  ( x  e.  _V  /\  Lim  x ) ) )  ->  ( B  .o  x )  =  U_ y  e.  x  ( B  .o  y ) )
4744, 46sseq12d 3369 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  ( B  e.  On  /\  ( x  e.  _V  /\  Lim  x ) ) )  ->  ( ( A  .o  x )  C_  ( B  .o  x
)  <->  U_ y  e.  x  ( A  .o  y
)  C_  U_ y  e.  x  ( B  .o  y ) ) )
4842, 47syl5ibr 213 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  ( B  e.  On  /\  ( x  e.  _V  /\  Lim  x ) ) )  ->  ( A. y  e.  x  ( A  .o  y )  C_  ( B  .o  y )  -> 
( A  .o  x
)  C_  ( B  .o  x ) ) )
4948anandirs 805 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( x  e. 
_V  /\  Lim  x ) )  ->  ( A. y  e.  x  ( A  .o  y )  C_  ( B  .o  y
)  ->  ( A  .o  x )  C_  ( B  .o  x ) ) )
5041, 49mpanr1 665 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  Lim  x )  ->  ( A. y  e.  x  ( A  .o  y )  C_  ( B  .o  y )  -> 
( A  .o  x
)  C_  ( B  .o  x ) ) )
5150expcom 425 . . . . . 6  |-  ( Lim  x  ->  ( ( A  e.  On  /\  B  e.  On )  ->  ( A. y  e.  x  ( A  .o  y
)  C_  ( B  .o  y )  ->  ( A  .o  x )  C_  ( B  .o  x
) ) ) )
5251adantrd 455 . . . . 5  |-  ( Lim  x  ->  ( (
( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( A. y  e.  x  ( A  .o  y )  C_  ( B  .o  y
)  ->  ( A  .o  x )  C_  ( B  .o  x ) ) ) )
533, 6, 9, 12, 16, 40, 52tfinds3 4836 . . . 4  |-  ( C  e.  On  ->  (
( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B )  ->  ( A  .o  C )  C_  ( B  .o  C
) ) )
5453exp3a 426 . . 3  |-  ( C  e.  On  ->  (
( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  ->  ( A  .o  C )  C_  ( B  .o  C ) ) ) )
55543impib 1151 . 2  |-  ( ( C  e.  On  /\  A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  ->  ( A  .o  C )  C_  ( B  .o  C
) ) )
56553coml 1160 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  ->  ( A  .o  C )  C_  ( B  .o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    C_ wss 3312   (/)c0 3620   U_ciun 4085   Oncon0 4573   Lim wlim 4574   suc csuc 4575  (class class class)co 6073    +o coa 6713    .o comu 6714
This theorem is referenced by:  omword2  6809  oewordri  6827  oeordsuc  6829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-oadd 6720  df-omul 6721
  Copyright terms: Public domain W3C validator