MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomon Unicode version

Theorem ondomon 8201
Description: The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 7275. (Contributed by NM, 7-Nov-2003.) (Proof modification is discouraged.)
Assertion
Ref Expression
ondomon  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem ondomon
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 4433 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  e.  On )
2 vex 2804 . . . . . . . . . . . . 13  |-  z  e. 
_V
3 onelss 4450 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
y  e.  z  -> 
y  C_  z )
)
43imp 418 . . . . . . . . . . . . 13  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  C_  z )
5 ssdomg 6923 . . . . . . . . . . . . 13  |-  ( z  e.  _V  ->  (
y  C_  z  ->  y  ~<_  z ) )
62, 4, 5mpsyl 59 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  ~<_  z )
71, 6jca 518 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  y  e.  z )  ->  ( y  e.  On  /\  y  ~<_  z ) )
8 domtr 6930 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  z  /\  z  ~<_  A )  ->  y  ~<_  A )
98anim2i 552 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  ( y  ~<_  z  /\  z  ~<_  A ) )  ->  ( y  e.  On  /\  y  ~<_  A ) )
109anassrs 629 . . . . . . . . . . 11  |-  ( ( ( y  e.  On  /\  y  ~<_  z )  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) )
117, 10sylan 457 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  y  e.  z )  /\  z  ~<_  A )  ->  ( y  e.  On  /\  y  ~<_  A ) )
1211exp31 587 . . . . . . . . 9  |-  ( z  e.  On  ->  (
y  e.  z  -> 
( z  ~<_  A  -> 
( y  e.  On  /\  y  ~<_  A ) ) ) )
1312com12 27 . . . . . . . 8  |-  ( y  e.  z  ->  (
z  e.  On  ->  ( z  ~<_  A  ->  (
y  e.  On  /\  y  ~<_  A ) ) ) )
1413imp3a 420 . . . . . . 7  |-  ( y  e.  z  ->  (
( z  e.  On  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) ) )
15 breq1 4042 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ~<_  A  <->  z  ~<_  A ) )
1615elrab 2936 . . . . . . 7  |-  ( z  e.  { x  e.  On  |  x  ~<_  A }  <->  ( z  e.  On  /\  z  ~<_  A ) )
17 breq1 4042 . . . . . . . 8  |-  ( x  =  y  ->  (
x  ~<_  A  <->  y  ~<_  A ) )
1817elrab 2936 . . . . . . 7  |-  ( y  e.  { x  e.  On  |  x  ~<_  A }  <->  ( y  e.  On  /\  y  ~<_  A ) )
1914, 16, 183imtr4g 261 . . . . . 6  |-  ( y  e.  z  ->  (
z  e.  { x  e.  On  |  x  ~<_  A }  ->  y  e.  { x  e.  On  |  x  ~<_  A } ) )
2019imp 418 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A } )  ->  y  e.  { x  e.  On  |  x  ~<_  A }
)
2120gen2 1537 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A }
)  ->  y  e.  { x  e.  On  |  x  ~<_  A } )
22 dftr2 4131 . . . 4  |-  ( Tr 
{ x  e.  On  |  x  ~<_  A }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  On  |  x  ~<_  A } )  ->  y  e.  {
x  e.  On  |  x  ~<_  A } ) )
2321, 22mpbir 200 . . 3  |-  Tr  {
x  e.  On  |  x  ~<_  A }
24 ssrab2 3271 . . 3  |-  { x  e.  On  |  x  ~<_  A }  C_  On
25 ordon 4590 . . 3  |-  Ord  On
26 trssord 4425 . . 3  |-  ( ( Tr  { x  e.  On  |  x  ~<_  A }  /\  { x  e.  On  |  x  ~<_  A }  C_  On  /\  Ord  On )  ->  Ord  { x  e.  On  |  x  ~<_  A } )
2723, 24, 25, 26mp3an 1277 . 2  |-  Ord  {
x  e.  On  |  x  ~<_  A }
28 elex 2809 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
29 canth2g 7031 . . . . . . . . 9  |-  ( A  e.  _V  ->  A  ~<  ~P A )
30 domsdomtr 7012 . . . . . . . . 9  |-  ( ( x  ~<_  A  /\  A  ~<  ~P A )  ->  x  ~<  ~P A )
3129, 30sylan2 460 . . . . . . . 8  |-  ( ( x  ~<_  A  /\  A  e.  _V )  ->  x  ~<  ~P A )
3231expcom 424 . . . . . . 7  |-  ( A  e.  _V  ->  (
x  ~<_  A  ->  x  ~<  ~P A ) )
3332ralrimivw 2640 . . . . . 6  |-  ( A  e.  _V  ->  A. x  e.  On  ( x  ~<_  A  ->  x  ~<  ~P A
) )
3428, 33syl 15 . . . . 5  |-  ( A  e.  V  ->  A. x  e.  On  ( x  ~<_  A  ->  x  ~<  ~P A
) )
35 ss2rab 3262 . . . . 5  |-  ( { x  e.  On  |  x  ~<_  A }  C_  { x  e.  On  |  x  ~<  ~P A }  <->  A. x  e.  On  (
x  ~<_  A  ->  x  ~<  ~P A ) )
3634, 35sylibr 203 . . . 4  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  C_  { x  e.  On  |  x  ~<  ~P A } )
37 pwexg 4210 . . . . . 6  |-  ( A  e.  V  ->  ~P A  e.  _V )
38 numth3 8113 . . . . . 6  |-  ( ~P A  e.  _V  ->  ~P A  e.  dom  card )
39 cardval2 7640 . . . . . 6  |-  ( ~P A  e.  dom  card  -> 
( card `  ~P A )  =  { x  e.  On  |  x  ~<  ~P A } )
4037, 38, 393syl 18 . . . . 5  |-  ( A  e.  V  ->  ( card `  ~P A )  =  { x  e.  On  |  x  ~<  ~P A } )
41 fvex 5555 . . . . 5  |-  ( card `  ~P A )  e. 
_V
4240, 41syl6eqelr 2385 . . . 4  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<  ~P A }  e.  _V )
43 ssexg 4176 . . . 4  |-  ( ( { x  e.  On  |  x  ~<_  A }  C_ 
{ x  e.  On  |  x  ~<  ~P A }  /\  { x  e.  On  |  x  ~<  ~P A }  e.  _V )  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
4436, 42, 43syl2anc 642 . . 3  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
45 elong 4416 . . 3  |-  ( { x  e.  On  |  x  ~<_  A }  e.  _V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
4644, 45syl 15 . 2  |-  ( A  e.  V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
4727, 46mpbiri 224 1  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801    C_ wss 3165   ~Pcpw 3638   class class class wbr 4039   Tr wtr 4129   Ord word 4407   Oncon0 4408   dom cdm 4705   ` cfv 5271    ~<_ cdom 6877    ~< csdm 6878   cardccrd 7584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-recs 6404  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-card 7588  df-ac 7759
  Copyright terms: Public domain W3C validator