MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomon Unicode version

Theorem ondomon 8180
Description: The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 7254. (Contributed by NM, 7-Nov-2003.) (Proof modification is discouraged.)
Assertion
Ref Expression
ondomon  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Distinct variable group:    x, A
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
Allowed substitution hint:    V( x)

Proof of Theorem ondomon
StepHypRef Expression
1 onelon 4416 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  e.  On )
2 vex 2792 . . . . . . . . . . . . 13  |-  z  e. 
_V
3 onelss 4433 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
y  e.  z  -> 
y  C_  z )
)
43imp 420 . . . . . . . . . . . . 13  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  C_  z )
5 ssdomg 6902 . . . . . . . . . . . . 13  |-  ( z  e.  _V  ->  (
y  C_  z  ->  y  ~<_  z ) )
62, 4, 5mpsyl 61 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  ~<_  z )
71, 6jca 520 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  y  e.  z )  ->  ( y  e.  On  /\  y  ~<_  z ) )
8 domtr 6909 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  z  /\  z  ~<_  A )  ->  y  ~<_  A )
98anim2i 554 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  ( y  ~<_  z  /\  z  ~<_  A ) )  ->  ( y  e.  On  /\  y  ~<_  A ) )
109anassrs 631 . . . . . . . . . . 11  |-  ( ( ( y  e.  On  /\  y  ~<_  z )  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) )
117, 10sylan 459 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  y  e.  z )  /\  z  ~<_  A )  ->  ( y  e.  On  /\  y  ~<_  A ) )
1211exp31 589 . . . . . . . . 9  |-  ( z  e.  On  ->  (
y  e.  z  -> 
( z  ~<_  A  -> 
( y  e.  On  /\  y  ~<_  A ) ) ) )
1312com12 29 . . . . . . . 8  |-  ( y  e.  z  ->  (
z  e.  On  ->  ( z  ~<_  A  ->  (
y  e.  On  /\  y  ~<_  A ) ) ) )
1413imp3a 422 . . . . . . 7  |-  ( y  e.  z  ->  (
( z  e.  On  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) ) )
15 breq1 4027 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ~<_  A  <->  z  ~<_  A ) )
1615elrab 2924 . . . . . . 7  |-  ( z  e.  { x  e.  On  |  x  ~<_  A }  <->  ( z  e.  On  /\  z  ~<_  A ) )
17 breq1 4027 . . . . . . . 8  |-  ( x  =  y  ->  (
x  ~<_  A  <->  y  ~<_  A ) )
1817elrab 2924 . . . . . . 7  |-  ( y  e.  { x  e.  On  |  x  ~<_  A }  <->  ( y  e.  On  /\  y  ~<_  A ) )
1914, 16, 183imtr4g 263 . . . . . 6  |-  ( y  e.  z  ->  (
z  e.  { x  e.  On  |  x  ~<_  A }  ->  y  e.  { x  e.  On  |  x  ~<_  A } ) )
2019imp 420 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A } )  ->  y  e.  { x  e.  On  |  x  ~<_  A }
)
2120gen2 1535 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A }
)  ->  y  e.  { x  e.  On  |  x  ~<_  A } )
22 dftr2 4116 . . . 4  |-  ( Tr 
{ x  e.  On  |  x  ~<_  A }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  On  |  x  ~<_  A } )  ->  y  e.  {
x  e.  On  |  x  ~<_  A } ) )
2321, 22mpbir 202 . . 3  |-  Tr  {
x  e.  On  |  x  ~<_  A }
24 ssrab2 3259 . . 3  |-  { x  e.  On  |  x  ~<_  A }  C_  On
25 ordon 4573 . . 3  |-  Ord  On
26 trssord 4408 . . 3  |-  ( ( Tr  { x  e.  On  |  x  ~<_  A }  /\  { x  e.  On  |  x  ~<_  A }  C_  On  /\  Ord  On )  ->  Ord  { x  e.  On  |  x  ~<_  A } )
2723, 24, 25, 26mp3an 1279 . 2  |-  Ord  {
x  e.  On  |  x  ~<_  A }
28 elex 2797 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
29 canth2g 7010 . . . . . . . . 9  |-  ( A  e.  _V  ->  A  ~<  ~P A )
30 domsdomtr 6991 . . . . . . . . 9  |-  ( ( x  ~<_  A  /\  A  ~<  ~P A )  ->  x  ~<  ~P A )
3129, 30sylan2 462 . . . . . . . 8  |-  ( ( x  ~<_  A  /\  A  e.  _V )  ->  x  ~<  ~P A )
3231expcom 426 . . . . . . 7  |-  ( A  e.  _V  ->  (
x  ~<_  A  ->  x  ~<  ~P A ) )
3332ralrimivw 2628 . . . . . 6  |-  ( A  e.  _V  ->  A. x  e.  On  ( x  ~<_  A  ->  x  ~<  ~P A
) )
3428, 33syl 17 . . . . 5  |-  ( A  e.  V  ->  A. x  e.  On  ( x  ~<_  A  ->  x  ~<  ~P A
) )
35 ss2rab 3250 . . . . 5  |-  ( { x  e.  On  |  x  ~<_  A }  C_  { x  e.  On  |  x  ~<  ~P A }  <->  A. x  e.  On  (
x  ~<_  A  ->  x  ~<  ~P A ) )
3634, 35sylibr 205 . . . 4  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  C_  { x  e.  On  |  x  ~<  ~P A } )
37 pwexg 4193 . . . . . 6  |-  ( A  e.  V  ->  ~P A  e.  _V )
38 numth3 8092 . . . . . 6  |-  ( ~P A  e.  _V  ->  ~P A  e.  dom  card )
39 cardval2 7619 . . . . . 6  |-  ( ~P A  e.  dom  card  -> 
( card `  ~P A )  =  { x  e.  On  |  x  ~<  ~P A } )
4037, 38, 393syl 20 . . . . 5  |-  ( A  e.  V  ->  ( card `  ~P A )  =  { x  e.  On  |  x  ~<  ~P A } )
41 fvex 5499 . . . . 5  |-  ( card `  ~P A )  e. 
_V
4240, 41syl6eqelr 2373 . . . 4  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<  ~P A }  e.  _V )
43 ssexg 4161 . . . 4  |-  ( ( { x  e.  On  |  x  ~<_  A }  C_ 
{ x  e.  On  |  x  ~<  ~P A }  /\  { x  e.  On  |  x  ~<  ~P A }  e.  _V )  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
4436, 42, 43syl2anc 644 . . 3  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
45 elong 4399 . . 3  |-  ( { x  e.  On  |  x  ~<_  A }  e.  _V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
4644, 45syl 17 . 2  |-  ( A  e.  V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
4727, 46mpbiri 226 1  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528    = wceq 1624    e. wcel 1685   A.wral 2544   {crab 2548   _Vcvv 2789    C_ wss 3153   ~Pcpw 3626   class class class wbr 4024   Tr wtr 4114   Ord word 4390   Oncon0 4391   dom cdm 4688   ` cfv 5221    ~<_ cdom 6856    ~< csdm 6857   cardccrd 7563
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-ac2 8084
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-suc 4397  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-iota 6252  df-riota 6299  df-recs 6383  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-card 7567  df-ac 7738
  Copyright terms: Public domain W3C validator