Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneli Unicode version

Theorem oneli 4458
 Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1
Assertion
Ref Expression
oneli

Proof of Theorem oneli
StepHypRef Expression
1 on.1 . 2
2 onelon 4375 . 2
31, 2mpan 654 1
 Colors of variables: wff set class Syntax hints:   wi 6   wcel 1621  con0 4350 This theorem is referenced by:  onssneli  4460  oawordeulem  6506  rankuni  7489  tcrank  7508  cardne  7552  cardval2  7578  alephsuc2  7661  cfsmolem  7850  cfcof  7854  alephreg  8158  pwcfsdom  8159  tskcard  8357  onsucconi  24237 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-tr 4074  df-eprel 4263  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354
 Copyright terms: Public domain W3C validator