MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Structured version   Unicode version

Theorem onfr 4655
Description: The ordinal class is well-founded. This lemma is needed for ordon 4798 in order to eliminate the need for the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr  |-  _E  Fr  On

Proof of Theorem onfr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 4602 . 2  |-  (  _E  Fr  On  <->  A. x
( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
2 n0 3625 . . . 4  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
3 ineq2 3525 . . . . . . . . . 10  |-  ( z  =  y  ->  (
x  i^i  z )  =  ( x  i^i  y ) )
43eqeq1d 2451 . . . . . . . . 9  |-  ( z  =  y  ->  (
( x  i^i  z
)  =  (/)  <->  ( x  i^i  y )  =  (/) ) )
54rspcev 3061 . . . . . . . 8  |-  ( ( y  e.  x  /\  ( x  i^i  y
)  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
65adantll 696 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
7 inss1 3549 . . . . . . . 8  |-  ( x  i^i  y )  C_  x
8 ssel2 3332 . . . . . . . . . . . 12  |-  ( ( x  C_  On  /\  y  e.  x )  ->  y  e.  On )
9 eloni 4626 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  Ord  y )
108, 9syl 16 . . . . . . . . . . 11  |-  ( ( x  C_  On  /\  y  e.  x )  ->  Ord  y )
11 ordfr 4631 . . . . . . . . . . 11  |-  ( Ord  y  ->  _E  Fr  y )
1210, 11syl 16 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  _E  Fr  y )
13 inss2 3550 . . . . . . . . . . 11  |-  ( x  i^i  y )  C_  y
14 vex 2968 . . . . . . . . . . . . 13  |-  x  e. 
_V
1514inex1 4379 . . . . . . . . . . . 12  |-  ( x  i^i  y )  e. 
_V
1615epfrc 4603 . . . . . . . . . . 11  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  C_  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1713, 16mp3an2 1268 . . . . . . . . . 10  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1812, 17sylan 459 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
19 inass 3539 . . . . . . . . . . . . 13  |-  ( ( x  i^i  y )  i^i  z )  =  ( x  i^i  (
y  i^i  z )
)
2010adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  Ord  y )
21 simpr 449 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  e.  ( x  i^i  y
) )
2213, 21sseldi 3335 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  e.  y )
23 ordelss 4632 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  y  /\  z  e.  y )  ->  z  C_  y )
2420, 22, 23syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  C_  y )
25 dfss1 3534 . . . . . . . . . . . . . . 15  |-  ( z 
C_  y  <->  ( y  i^i  z )  =  z )
2624, 25sylib 190 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( y  i^i  z )  =  z )
2726ineq2d 3531 . . . . . . . . . . . . 13  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( x  i^i  ( y  i^i  z
) )  =  ( x  i^i  z ) )
2819, 27syl5eq 2487 . . . . . . . . . . . 12  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  i^i  y )  i^i  z )  =  ( x  i^i  z ) )
2928eqeq1d 2451 . . . . . . . . . . 11  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
( x  i^i  y
)  i^i  z )  =  (/)  <->  ( x  i^i  z )  =  (/) ) )
3029rexbidva 2729 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  ( E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/)  <->  E. z  e.  ( x  i^i  y
) ( x  i^i  z )  =  (/) ) )
3130adantr 453 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  -> 
( E. z  e.  ( x  i^i  y
) ( ( x  i^i  y )  i^i  z )  =  (/)  <->  E. z  e.  ( x  i^i  y ) ( x  i^i  z )  =  (/) ) )
3218, 31mpbid 203 . . . . . . . 8  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/) )
33 ssrexv 3397 . . . . . . . 8  |-  ( ( x  i^i  y ) 
C_  x  ->  ( E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
347, 32, 33mpsyl 62 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
356, 34pm2.61dane 2689 . . . . . 6  |-  ( ( x  C_  On  /\  y  e.  x )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
3635ex 425 . . . . 5  |-  ( x 
C_  On  ->  ( y  e.  x  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3736exlimdv 1648 . . . 4  |-  ( x 
C_  On  ->  ( E. y  y  e.  x  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
382, 37syl5bi 210 . . 3  |-  ( x 
C_  On  ->  ( x  =/=  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3938imp 420 . 2  |-  ( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
401, 39mpgbir 1560 1  |-  _E  Fr  On
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1654    e. wcel 1728    =/= wne 2606   E.wrex 2713    i^i cin 3308    C_ wss 3309   (/)c0 3616    _E cep 4527    Fr wfr 4573   Ord word 4615   Oncon0 4616
This theorem is referenced by:  ordon  4798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pr 4438
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-rab 2721  df-v 2967  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-br 4244  df-opab 4298  df-tr 4334  df-eprel 4529  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620
  Copyright terms: Public domain W3C validator