Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALT Unicode version

Theorem onfrALT 28346
Description: The epsilon relation is foundational on the class of ordinal numbers. onfrALT 28346 is an alternate proof of onfr 4580. onfrALTVD 28712 is the Virtual Deduction proof from which onfrALT 28346 is derived. The Virtual Deduction proof mirrors the working proof of onfr 4580 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 28712. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALT  |-  _E  Fr  On

Proof of Theorem onfrALT
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 4527 . 2  |-  (  _E  Fr  On  <->  A. a
( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a 
( a  i^i  y
)  =  (/) ) )
2 simpr 448 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  =/=  (/) )
3 n0 3597 . . . 4  |-  ( a  =/=  (/)  <->  E. x  x  e.  a )
4 onfrALTlem1 28345 . . . . . . 7  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
54exp3a 426 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
x  e.  a  -> 
( ( a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ) )
6 onfrALTlem2 28343 . . . . . . 7  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
76exp3a 426 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
x  e.  a  -> 
( -.  ( a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ) )
8 pm2.61 165 . . . . . 6  |-  ( ( ( a  i^i  x
)  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  ( ( -.  ( a  i^i  x
)  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
95, 7, 8ee22 1368 . . . . 5  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
x  e.  a  ->  E. y  e.  a 
( a  i^i  y
)  =  (/) ) )
109exlimdv 1643 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  ( E. x  x  e.  a  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
113, 10syl5bi 209 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
a  =/=  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
122, 11mpd 15 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
131, 12mpgbir 1556 1  |-  _E  Fr  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    =/= wne 2567   E.wrex 2667    i^i cin 3279    C_ wss 3280   (/)c0 3588    _E cep 4452    Fr wfr 4498   Oncon0 4541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545
  Copyright terms: Public domain W3C validator