MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfununi Unicode version

Theorem onfununi 6291
Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
onfununi.1  |-  ( Lim  y  ->  ( F `  y )  =  U_ x  e.  y  ( F `  x )
)
onfununi.2  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
Assertion
Ref Expression
onfununi  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S )  =  U_ x  e.  S  ( F `  x ) )
Distinct variable groups:    x, y, S    x, F, y    x, T
Allowed substitution hint:    T( y)

Proof of Theorem onfununi
StepHypRef Expression
1 ssorduni 4514 . . . . . . . . . 10  |-  ( S 
C_  On  ->  Ord  U. S )
21ad2antrr 709 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  Ord  U. S
)
3 nelneq 2354 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  S  /\  -.  U. S  e.  S
)  ->  -.  x  =  U. S )
4 elssuni 3796 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  S  ->  x  C_ 
U. S )
54adantl 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  On  /\  x  e.  S )  ->  x  C_ 
U. S )
6 ssel 3116 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( S 
C_  On  ->  ( x  e.  S  ->  x  e.  On ) )
7 eloni 4339 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  On  ->  Ord  x )
86, 7syl6 31 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S 
C_  On  ->  ( x  e.  S  ->  Ord  x ) )
98imp 420 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  C_  On  /\  x  e.  S )  ->  Ord  x )
10 ordsseleq 4358 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  x  /\  Ord  U. S )  ->  (
x  C_  U. S  <->  ( x  e.  U. S  \/  x  =  U. S ) ) )
119, 1, 10syl2an 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  C_  On  /\  x  e.  S )  /\  S  C_  On )  ->  ( x  C_  U. S  <->  ( x  e. 
U. S  \/  x  =  U. S ) ) )
1211anabss1 790 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
x  C_  U. S  <->  ( x  e.  U. S  \/  x  =  U. S ) ) )
135, 12mpbid 203 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
x  e.  U. S  \/  x  =  U. S ) )
1413ord 368 . . . . . . . . . . . . . . . . 17  |-  ( ( S  C_  On  /\  x  e.  S )  ->  ( -.  x  e.  U. S  ->  x  =  U. S
) )
1514con1d 118 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  On  /\  x  e.  S )  ->  ( -.  x  =  U. S  ->  x  e.  U. S ) )
163, 15syl5 30 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
( x  e.  S  /\  -.  U. S  e.  S )  ->  x  e.  U. S ) )
1716exp4b 593 . . . . . . . . . . . . . 14  |-  ( S 
C_  On  ->  ( x  e.  S  ->  (
x  e.  S  -> 
( -.  U. S  e.  S  ->  x  e. 
U. S ) ) ) )
1817pm2.43d 46 . . . . . . . . . . . . 13  |-  ( S 
C_  On  ->  ( x  e.  S  ->  ( -.  U. S  e.  S  ->  x  e.  U. S
) ) )
1918com23 74 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  ( -. 
U. S  e.  S  ->  ( x  e.  S  ->  x  e.  U. S
) ) )
2019imp 420 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  ( x  e.  S  ->  x  e.  U. S ) )
2120ssrdv 3127 . . . . . . . . . 10  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  S  C_  U. S
)
22 ssn0 3429 . . . . . . . . . 10  |-  ( ( S  C_  U. S  /\  S  =/=  (/) )  ->  U. S  =/=  (/) )
2321, 22sylan 459 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  U. S  =/=  (/) )
24 uniss 3789 . . . . . . . . . . . 12  |-  ( S 
C_  U. S  ->  U. S  C_ 
U. U. S )
2521, 24syl 17 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. S  C_  U. U. S )
26 orduniss 4424 . . . . . . . . . . . . 13  |-  ( Ord  U. S  ->  U. U. S  C_  U. S )
271, 26syl 17 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  U. U. S  C_  U. S )
2827adantr 453 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. U. S  C_  U. S )
2925, 28eqssd 3138 . . . . . . . . . 10  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. S  =  U. U. S )
3029adantr 453 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  U. S  = 
U. U. S )
31 df-lim 4334 . . . . . . . . 9  |-  ( Lim  U. S  <->  ( Ord  U. S  /\  U. S  =/=  (/)  /\  U. S  = 
U. U. S ) )
322, 23, 30, 31syl3anbrc 1141 . . . . . . . 8  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  Lim  U. S
)
3332an32s 782 . . . . . . 7  |-  ( ( ( S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S
)  ->  Lim  U. S
)
34333adantl1 1116 . . . . . 6  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  Lim  U. S )
35 ssonuni 4515 . . . . . . . . . 10  |-  ( S  e.  T  ->  ( S  C_  On  ->  U. S  e.  On ) )
36 limeq 4341 . . . . . . . . . . . 12  |-  ( y  =  U. S  -> 
( Lim  y  <->  Lim  U. S
) )
37 fveq2 5423 . . . . . . . . . . . . 13  |-  ( y  =  U. S  -> 
( F `  y
)  =  ( F `
 U. S ) )
38 iuneq1 3859 . . . . . . . . . . . . 13  |-  ( y  =  U. S  ->  U_ x  e.  y 
( F `  x
)  =  U_ x  e.  U. S ( F `
 x ) )
3937, 38eqeq12d 2270 . . . . . . . . . . . 12  |-  ( y  =  U. S  -> 
( ( F `  y )  =  U_ x  e.  y  ( F `  x )  <->  ( F `  U. S
)  =  U_ x  e.  U. S ( F `
 x ) ) )
4036, 39imbi12d 313 . . . . . . . . . . 11  |-  ( y  =  U. S  -> 
( ( Lim  y  ->  ( F `  y
)  =  U_ x  e.  y  ( F `  x ) )  <->  ( Lim  U. S  ->  ( F `  U. S )  = 
U_ x  e.  U. S ( F `  x ) ) ) )
41 onfununi.1 . . . . . . . . . . 11  |-  ( Lim  y  ->  ( F `  y )  =  U_ x  e.  y  ( F `  x )
)
4240, 41vtoclg 2794 . . . . . . . . . 10  |-  ( U. S  e.  On  ->  ( Lim  U. S  -> 
( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
4335, 42syl6 31 . . . . . . . . 9  |-  ( S  e.  T  ->  ( S  C_  On  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e. 
U. S ( F `
 x ) ) ) )
4443imp 420 . . . . . . . 8  |-  ( ( S  e.  T  /\  S  C_  On )  -> 
( Lim  U. S  -> 
( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
45443adant3 980 . . . . . . 7  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e. 
U. S ( F `
 x ) ) )
4645adantr 453 . . . . . 6  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
4734, 46mpd 16 . . . . 5  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) )
48 eluni2 3772 . . . . . . . . . . . 12  |-  ( x  e.  U. S  <->  E. y  e.  S  x  e.  y )
49 ssel 3116 . . . . . . . . . . . . . . . . . 18  |-  ( S 
C_  On  ->  ( y  e.  S  ->  y  e.  On ) )
5049anim1d 549 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( y  e.  On  /\  x  e.  y ) ) )
51 onelon 4354 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
5250, 51syl6 31 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  x  e.  On ) )
5349adantrd 456 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  y  e.  On ) )
54 eloni 4339 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  Ord  y )
5549, 54syl6 31 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( y  e.  S  ->  Ord  y ) )
56 ordelss 4345 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  y  /\  x  e.  y )  ->  x  C_  y )
5756a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( ( Ord  y  /\  x  e.  y )  ->  x  C_  y ) )
5855, 57syland 469 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  x  C_  y )
)
5952, 53, 583jcad 1138 . . . . . . . . . . . . . . 15  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( x  e.  On  /\  y  e.  On  /\  x  C_  y ) ) )
60 onfununi.2 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
6159, 60syl6 31 . . . . . . . . . . . . . 14  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( F `  x
)  C_  ( F `  y ) ) )
6261exp3a 427 . . . . . . . . . . . . 13  |-  ( S 
C_  On  ->  ( y  e.  S  ->  (
x  e.  y  -> 
( F `  x
)  C_  ( F `  y ) ) ) )
6362reximdvai 2624 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  ( E. y  e.  S  x  e.  y  ->  E. y  e.  S  ( F `  x )  C_  ( F `  y )
) )
6448, 63syl5bi 210 . . . . . . . . . . 11  |-  ( S 
C_  On  ->  ( x  e.  U. S  ->  E. y  e.  S  ( F `  x ) 
C_  ( F `  y ) ) )
65 ssiun 3885 . . . . . . . . . . 11  |-  ( E. y  e.  S  ( F `  x ) 
C_  ( F `  y )  ->  ( F `  x )  C_ 
U_ y  e.  S  ( F `  y ) )
6664, 65syl6 31 . . . . . . . . . 10  |-  ( S 
C_  On  ->  ( x  e.  U. S  -> 
( F `  x
)  C_  U_ y  e.  S  ( F `  y ) ) )
6766ralrimiv 2596 . . . . . . . . 9  |-  ( S 
C_  On  ->  A. x  e.  U. S ( F `
 x )  C_  U_ y  e.  S  ( F `  y ) )
68 iunss 3884 . . . . . . . . 9  |-  ( U_ x  e.  U. S ( F `  x ) 
C_  U_ y  e.  S  ( F `  y )  <->  A. x  e.  U. S
( F `  x
)  C_  U_ y  e.  S  ( F `  y ) )
6967, 68sylibr 205 . . . . . . . 8  |-  ( S 
C_  On  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ y  e.  S  ( F `  y ) )
70 fveq2 5423 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
7170cbviunv 3882 . . . . . . . 8  |-  U_ y  e.  S  ( F `  y )  =  U_ x  e.  S  ( F `  x )
7269, 71syl6sseq 3166 . . . . . . 7  |-  ( S 
C_  On  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ x  e.  S  ( F `  x ) )
73723ad2ant2 982 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ x  e.  S  ( F `  x ) )
7473adantr 453 . . . . 5  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  U_ x  e.  U. S ( F `  x )  C_  U_ x  e.  S  ( F `  x ) )
7547, 74eqsstrd 3154 . . . 4  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( F `  U. S )  C_  U_ x  e.  S  ( F `  x ) )
7675ex 425 . . 3  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( -.  U. S  e.  S  ->  ( F `  U. S )  C_  U_ x  e.  S  ( F `  x ) ) )
77 fveq2 5423 . . . 4  |-  ( x  =  U. S  -> 
( F `  x
)  =  ( F `
 U. S ) )
7877ssiun2s 3887 . . 3  |-  ( U. S  e.  S  ->  ( F `  U. S
)  C_  U_ x  e.  S  ( F `  x ) )
7976, 78pm2.61d2 154 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S ) 
C_  U_ x  e.  S  ( F `  x ) )
8035imp 420 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On )  ->  U. S  e.  On )
81803adant3 980 . . . . 5  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U. S  e.  On )
8263ad2ant2 982 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  ->  x  e.  On )
)
834a1i 12 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  ->  x  C_  U. S ) )
8482, 83jcad 521 . . . . 5  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  -> 
( x  e.  On  /\  x  C_  U. S ) ) )
85 sseq2 3142 . . . . . . . 8  |-  ( y  =  U. S  -> 
( x  C_  y  <->  x 
C_  U. S ) )
8685anbi2d 687 . . . . . . 7  |-  ( y  =  U. S  -> 
( ( x  e.  On  /\  x  C_  y )  <->  ( x  e.  On  /\  x  C_  U. S ) ) )
8737sseq2d 3148 . . . . . . 7  |-  ( y  =  U. S  -> 
( ( F `  x )  C_  ( F `  y )  <->  ( F `  x ) 
C_  ( F `  U. S ) ) )
8886, 87imbi12d 313 . . . . . 6  |-  ( y  =  U. S  -> 
( ( ( x  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )  <->  ( (
x  e.  On  /\  x  C_  U. S )  ->  ( F `  x )  C_  ( F `  U. S ) ) ) )
89603com12 1160 . . . . . . 7  |-  ( ( y  e.  On  /\  x  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
90893expib 1159 . . . . . 6  |-  ( y  e.  On  ->  (
( x  e.  On  /\  x  C_  y )  ->  ( F `  x
)  C_  ( F `  y ) ) )
9188, 90vtoclga 2800 . . . . 5  |-  ( U. S  e.  On  ->  ( ( x  e.  On  /\  x  C_  U. S )  ->  ( F `  x )  C_  ( F `  U. S ) ) )
9281, 84, 91sylsyld 54 . . . 4  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  -> 
( F `  x
)  C_  ( F `  U. S ) ) )
9392ralrimiv 2596 . . 3  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  A. x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
94 iunss 3884 . . 3  |-  ( U_ x  e.  S  ( F `  x )  C_  ( F `  U. S )  <->  A. x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
9593, 94sylibr 205 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
9679, 95eqssd 3138 1  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S )  =  U_ x  e.  S  ( F `  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517    C_ wss 3094   (/)c0 3397   U.cuni 3768   U_ciun 3846   Ord word 4328   Oncon0 4329   Lim wlim 4330   ` cfv 4638
This theorem is referenced by:  onovuni  6292
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-xp 4640  df-cnv 4642  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fv 4654
  Copyright terms: Public domain W3C validator