MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onint Unicode version

Theorem onint 4558
Description: The intersection (infimum) of a non-empty class of ordinal numbers belongs to the class. Compare Exercise 4 of [TakeutiZaring] p. 45. (Contributed by NM, 31-Jan-1997.)
Assertion
Ref Expression
onint  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )

Proof of Theorem onint
StepHypRef Expression
1 ordon 4546 . . . 4  |-  Ord  On
2 tz7.5 4385 . . . 4  |-  ( ( Ord  On  /\  A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  ( A  i^i  x )  =  (/) )
31, 2mp3an1 1269 . . 3  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  ( A  i^i  x )  =  (/) )
4 ssel 3149 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  On ) )
54imdistani 674 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  On  /\  x  e.  A )  ->  ( A  C_  On  /\  x  e.  On ) )
6 ssel 3149 . . . . . . . . . . . . . . . . . . . 20  |-  ( A 
C_  On  ->  ( z  e.  A  ->  z  e.  On ) )
7 ontri1 4398 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  On  /\  z  e.  On )  ->  ( x  C_  z  <->  -.  z  e.  x ) )
8 ssel 3149 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x 
C_  z  ->  (
y  e.  x  -> 
y  e.  z ) )
97, 8syl6bir 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  On  /\  z  e.  On )  ->  ( -.  z  e.  x  ->  ( y  e.  x  ->  y  e.  z ) ) )
109ex 425 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  (
z  e.  On  ->  ( -.  z  e.  x  ->  ( y  e.  x  ->  y  e.  z ) ) ) )
116, 10sylan9 641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  C_  On  /\  x  e.  On )  ->  (
z  e.  A  -> 
( -.  z  e.  x  ->  ( y  e.  x  ->  y  e.  z ) ) ) )
1211com4r 82 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  x  ->  (
( A  C_  On  /\  x  e.  On )  ->  ( z  e.  A  ->  ( -.  z  e.  x  ->  y  e.  z ) ) ) )
1312imp31 423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  On ) )  /\  z  e.  A )  ->  ( -.  z  e.  x  ->  y  e.  z ) )
1413ralimdva 2596 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  On )
)  ->  ( A. z  e.  A  -.  z  e.  x  ->  A. z  e.  A  y  e.  z ) )
15 disj 3470 . . . . . . . . . . . . . . . 16  |-  ( ( A  i^i  x )  =  (/)  <->  A. z  e.  A  -.  z  e.  x
)
16 vex 2766 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
1716elint2 3843 . . . . . . . . . . . . . . . 16  |-  ( y  e.  |^| A  <->  A. z  e.  A  y  e.  z )
1814, 15, 173imtr4g 263 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  On )
)  ->  ( ( A  i^i  x )  =  (/)  ->  y  e.  |^| A ) )
195, 18sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  A )
)  ->  ( ( A  i^i  x )  =  (/)  ->  y  e.  |^| A ) )
2019exp32 591 . . . . . . . . . . . . 13  |-  ( y  e.  x  ->  ( A  C_  On  ->  (
x  e.  A  -> 
( ( A  i^i  x )  =  (/)  ->  y  e.  |^| A
) ) ) )
2120com4l 80 . . . . . . . . . . . 12  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
( A  i^i  x
)  =  (/)  ->  (
y  e.  x  -> 
y  e.  |^| A
) ) ) )
2221imp32 424 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  ( y  e.  x  ->  y  e.  |^| A ) )
2322ssrdv 3160 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  x  C_  |^| A
)
24 intss1 3851 . . . . . . . . . . 11  |-  ( x  e.  A  ->  |^| A  C_  x )
2524ad2antrl 711 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  |^| A  C_  x
)
2623, 25eqssd 3171 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  x  =  |^| A )
2726eleq1d 2324 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  ( x  e.  A  <->  |^| A  e.  A
) )
2827biimpd 200 . . . . . . 7  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  ( x  e.  A  ->  |^| A  e.  A ) )
2928exp32 591 . . . . . 6  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
( A  i^i  x
)  =  (/)  ->  (
x  e.  A  ->  |^| A  e.  A ) ) ) )
3029com34 79 . . . . 5  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
x  e.  A  -> 
( ( A  i^i  x )  =  (/)  ->  |^| A  e.  A
) ) ) )
3130pm2.43d 46 . . . 4  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
( A  i^i  x
)  =  (/)  ->  |^| A  e.  A ) ) )
3231rexlimdv 2641 . . 3  |-  ( A 
C_  On  ->  ( E. x  e.  A  ( A  i^i  x )  =  (/)  ->  |^| A  e.  A ) )
333, 32syl5 30 . 2  |-  ( A 
C_  On  ->  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A ) )
3433anabsi5 793 1  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519    i^i cin 3126    C_ wss 3127   (/)c0 3430   |^|cint 3836   Ord word 4363   Oncon0 4364
This theorem is referenced by:  onint0  4559  onssmin  4560  onminesb  4561  onminsb  4562  oninton  4563  oneqmin  4568  oeeulem  6567  nnawordex  6603  unblem1  7077  unblem2  7078  tz9.12lem3  7429  scott0  7524  cardid2  7554  ackbij1lem18  7831  cardcf  7846  cff1  7852  cflim2  7857  cfss  7859  cofsmo  7863  fin23lem26  7919  pwfseqlem3  8250  gruina  8408  2ndcdisj  17145  sltval2  23679  nocvxmin  23715  axfelem5  23720  rankeq1o  24177  dnnumch3  26512
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-br 3998  df-opab 4052  df-tr 4088  df-eprel 4277  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368
  Copyright terms: Public domain W3C validator