MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onint Unicode version

Theorem onint 4734
Description: The intersection (infimum) of a non-empty class of ordinal numbers belongs to the class. Compare Exercise 4 of [TakeutiZaring] p. 45. (Contributed by NM, 31-Jan-1997.)
Assertion
Ref Expression
onint  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )

Proof of Theorem onint
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordon 4722 . . . 4  |-  Ord  On
2 tz7.5 4562 . . . 4  |-  ( ( Ord  On  /\  A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  ( A  i^i  x )  =  (/) )
31, 2mp3an1 1266 . . 3  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  ( A  i^i  x )  =  (/) )
4 ssel 3302 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  On ) )
54imdistani 672 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  On  /\  x  e.  A )  ->  ( A  C_  On  /\  x  e.  On ) )
6 ssel 3302 . . . . . . . . . . . . . . . . . . . 20  |-  ( A 
C_  On  ->  ( z  e.  A  ->  z  e.  On ) )
7 ontri1 4575 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  On  /\  z  e.  On )  ->  ( x  C_  z  <->  -.  z  e.  x ) )
8 ssel 3302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x 
C_  z  ->  (
y  e.  x  -> 
y  e.  z ) )
97, 8syl6bir 221 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  On  /\  z  e.  On )  ->  ( -.  z  e.  x  ->  ( y  e.  x  ->  y  e.  z ) ) )
109ex 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  (
z  e.  On  ->  ( -.  z  e.  x  ->  ( y  e.  x  ->  y  e.  z ) ) ) )
116, 10sylan9 639 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  C_  On  /\  x  e.  On )  ->  (
z  e.  A  -> 
( -.  z  e.  x  ->  ( y  e.  x  ->  y  e.  z ) ) ) )
1211com4r 82 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  x  ->  (
( A  C_  On  /\  x  e.  On )  ->  ( z  e.  A  ->  ( -.  z  e.  x  ->  y  e.  z ) ) ) )
1312imp31 422 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  On ) )  /\  z  e.  A )  ->  ( -.  z  e.  x  ->  y  e.  z ) )
1413ralimdva 2744 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  On )
)  ->  ( A. z  e.  A  -.  z  e.  x  ->  A. z  e.  A  y  e.  z ) )
15 disj 3628 . . . . . . . . . . . . . . . 16  |-  ( ( A  i^i  x )  =  (/)  <->  A. z  e.  A  -.  z  e.  x
)
16 vex 2919 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
1716elint2 4017 . . . . . . . . . . . . . . . 16  |-  ( y  e.  |^| A  <->  A. z  e.  A  y  e.  z )
1814, 15, 173imtr4g 262 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  On )
)  ->  ( ( A  i^i  x )  =  (/)  ->  y  e.  |^| A ) )
195, 18sylan2 461 . . . . . . . . . . . . . 14  |-  ( ( y  e.  x  /\  ( A  C_  On  /\  x  e.  A )
)  ->  ( ( A  i^i  x )  =  (/)  ->  y  e.  |^| A ) )
2019exp32 589 . . . . . . . . . . . . 13  |-  ( y  e.  x  ->  ( A  C_  On  ->  (
x  e.  A  -> 
( ( A  i^i  x )  =  (/)  ->  y  e.  |^| A
) ) ) )
2120com4l 80 . . . . . . . . . . . 12  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
( A  i^i  x
)  =  (/)  ->  (
y  e.  x  -> 
y  e.  |^| A
) ) ) )
2221imp32 423 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  ( y  e.  x  ->  y  e.  |^| A ) )
2322ssrdv 3314 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  x  C_  |^| A
)
24 intss1 4025 . . . . . . . . . . 11  |-  ( x  e.  A  ->  |^| A  C_  x )
2524ad2antrl 709 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  |^| A  C_  x
)
2623, 25eqssd 3325 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  x  =  |^| A )
2726eleq1d 2470 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  ( x  e.  A  <->  |^| A  e.  A
) )
2827biimpd 199 . . . . . . 7  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  ( A  i^i  x
)  =  (/) ) )  ->  ( x  e.  A  ->  |^| A  e.  A ) )
2928exp32 589 . . . . . 6  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
( A  i^i  x
)  =  (/)  ->  (
x  e.  A  ->  |^| A  e.  A ) ) ) )
3029com34 79 . . . . 5  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
x  e.  A  -> 
( ( A  i^i  x )  =  (/)  ->  |^| A  e.  A
) ) ) )
3130pm2.43d 46 . . . 4  |-  ( A 
C_  On  ->  ( x  e.  A  ->  (
( A  i^i  x
)  =  (/)  ->  |^| A  e.  A ) ) )
3231rexlimdv 2789 . . 3  |-  ( A 
C_  On  ->  ( E. x  e.  A  ( A  i^i  x )  =  (/)  ->  |^| A  e.  A ) )
333, 32syl5 30 . 2  |-  ( A 
C_  On  ->  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A ) )
3433anabsi5 791 1  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    i^i cin 3279    C_ wss 3280   (/)c0 3588   |^|cint 4010   Ord word 4540   Oncon0 4541
This theorem is referenced by:  onint0  4735  onssmin  4736  onminesb  4737  onminsb  4738  oninton  4739  oneqmin  4744  oeeulem  6803  nnawordex  6839  unblem1  7318  unblem2  7319  tz9.12lem3  7671  scott0  7766  cardid2  7796  ackbij1lem18  8073  cardcf  8088  cff1  8094  cflim2  8099  cfss  8101  cofsmo  8105  fin23lem26  8161  pwfseqlem3  8491  gruina  8649  2ndcdisj  17472  sltval2  25524  nocvxmin  25559  nobndlem5  25564  rankeq1o  26016  dnnumch3  27012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545
  Copyright terms: Public domain W3C validator