MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmsuc Unicode version

Theorem onmsuc 6530
Description: Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onmsuc  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )

Proof of Theorem onmsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 peano2 4678 . . . . 5  |-  ( B  e.  om  ->  suc  B  e.  om )
2 nnon 4664 . . . . 5  |-  ( suc 
B  e.  om  ->  suc 
B  e.  On )
31, 2syl 15 . . . 4  |-  ( B  e.  om  ->  suc  B  e.  On )
4 omv 6513 . . . 4  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  .o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B ) )
53, 4sylan2 460 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B
) )
61adantl 452 . . . 4  |-  ( ( A  e.  On  /\  B  e.  om )  ->  suc  B  e.  om )
7 fvres 5544 . . . 4  |-  ( suc 
B  e.  om  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B
) )
86, 7syl 15 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) )  |`  om ) `  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B ) )
95, 8eqtr4d 2320 . 2  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B ) )
10 ovex 5885 . . . . 5  |-  ( A  .o  B )  e. 
_V
11 oveq1 5867 . . . . . 6  |-  ( x  =  ( A  .o  B )  ->  (
x  +o  A )  =  ( ( A  .o  B )  +o  A ) )
12 eqid 2285 . . . . . 6  |-  ( x  e.  _V  |->  ( x  +o  A ) )  =  ( x  e. 
_V  |->  ( x  +o  A ) )
13 ovex 5885 . . . . . 6  |-  ( ( A  .o  B )  +o  A )  e. 
_V
1411, 12, 13fvmpt 5604 . . . . 5  |-  ( ( A  .o  B )  e.  _V  ->  (
( x  e.  _V  |->  ( x  +o  A
) ) `  ( A  .o  B ) )  =  ( ( A  .o  B )  +o  A ) )
1510, 14ax-mp 8 . . . 4  |-  ( ( x  e.  _V  |->  ( x  +o  A ) ) `  ( A  .o  B ) )  =  ( ( A  .o  B )  +o  A )
16 nnon 4664 . . . . . . 7  |-  ( B  e.  om  ->  B  e.  On )
17 omv 6513 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
1816, 17sylan2 460 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
19 fvres 5544 . . . . . . 7  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  B )
)
2019adantl 452 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) )  |`  om ) `  B )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  B
) )
2118, 20eqtr4d 2320 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) )
2221fveq2d 5531 . . . 4  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( x  e. 
_V  |->  ( x  +o  A ) ) `  ( A  .o  B
) )  =  ( ( x  e.  _V  |->  ( x  +o  A
) ) `  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
2315, 22syl5eqr 2331 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  A
)  =  ( ( x  e.  _V  |->  ( x  +o  A ) ) `  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
24 frsuc 6451 . . . 4  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B
)  =  ( ( x  e.  _V  |->  ( x  +o  A ) ) `  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
2524adantl 452 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) )  |`  om ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  +o  A
) ) `  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
2623, 25eqtr4d 2320 . 2  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  A
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B ) )
279, 26eqtr4d 2320 1  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790   (/)c0 3457    e. cmpt 4079   Oncon0 4394   suc csuc 4396   omcom 4658    |` cres 4693   ` cfv 5257  (class class class)co 5860   reccrdg 6424    +o coa 6478    .o comu 6479
This theorem is referenced by:  om1  6542  nnmsuc  6607
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-recs 6390  df-rdg 6425  df-omul 6486
  Copyright terms: Public domain W3C validator