MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneq Unicode version

Theorem onomeneq 7255
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
onomeneq  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  ~~  B  <->  A  =  B ) )

Proof of Theorem onomeneq
StepHypRef Expression
1 php5 7254 . . . . . . . . 9  |-  ( B  e.  om  ->  -.  B  ~~  suc  B )
21ad2antlr 708 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  -.  B  ~~  suc  B )
3 enen1 7206 . . . . . . . . 9  |-  ( A 
~~  B  ->  ( A  ~~  suc  B  <->  B  ~~  suc  B ) )
43adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  ( A  ~~  suc  B  <->  B  ~~  suc  B
) )
52, 4mtbird 293 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  -.  A  ~~  suc  B )
6 peano2 4824 . . . . . . . . . . . . . 14  |-  ( B  e.  om  ->  suc  B  e.  om )
7 sssucid 4618 . . . . . . . . . . . . . 14  |-  B  C_  suc  B
8 ssdomg 7112 . . . . . . . . . . . . . 14  |-  ( suc 
B  e.  om  ->  ( B  C_  suc  B  ->  B  ~<_  suc  B )
)
96, 7, 8ee10 1382 . . . . . . . . . . . . 13  |-  ( B  e.  om  ->  B  ~<_  suc  B )
10 endomtr 7124 . . . . . . . . . . . . 13  |-  ( ( A  ~~  B  /\  B  ~<_  suc  B )  ->  A  ~<_  suc  B )
119, 10sylan2 461 . . . . . . . . . . . 12  |-  ( ( A  ~~  B  /\  B  e.  om )  ->  A  ~<_  suc  B )
1211ancoms 440 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  A  ~~  B )  ->  A  ~<_  suc  B )
1312a1d 23 . . . . . . . . . 10  |-  ( ( B  e.  om  /\  A  ~~  B )  -> 
( om  C_  A  ->  A  ~<_  suc  B )
)
1413adantll 695 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  ( om  C_  A  ->  A  ~<_  suc  B )
)
15 ssel 3302 . . . . . . . . . . . . . . 15  |-  ( om  C_  A  ->  ( B  e.  om  ->  B  e.  A ) )
1615com12 29 . . . . . . . . . . . . . 14  |-  ( B  e.  om  ->  ( om  C_  A  ->  B  e.  A ) )
1716adantr 452 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  A  e.  On )  ->  ( om  C_  A  ->  B  e.  A ) )
18 eloni 4551 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  Ord  A )
19 ordelsuc 4759 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  Ord  A )  ->  ( B  e.  A  <->  suc  B  C_  A ) )
2018, 19sylan2 461 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  A  e.  On )  ->  ( B  e.  A  <->  suc 
B  C_  A )
)
2117, 20sylibd 206 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  A  e.  On )  ->  ( om  C_  A  ->  suc  B  C_  A
) )
22 ssdomg 7112 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( suc  B  C_  A  ->  suc 
B  ~<_  A ) )
2322adantl 453 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  A  e.  On )  ->  ( suc  B  C_  A  ->  suc  B  ~<_  A ) )
2421, 23syld 42 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  A  e.  On )  ->  ( om  C_  A  ->  suc  B  ~<_  A ) )
2524ancoms 440 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( om  C_  A  ->  suc  B  ~<_  A ) )
2625adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  ( om  C_  A  ->  suc  B  ~<_  A ) )
2714, 26jcad 520 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  ( om  C_  A  ->  ( A  ~<_  suc  B  /\  suc  B  ~<_  A ) ) )
28 sbth 7186 . . . . . . . 8  |-  ( ( A  ~<_  suc  B  /\  suc  B  ~<_  A )  ->  A  ~~  suc  B )
2927, 28syl6 31 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  ( om  C_  A  ->  A  ~~  suc  B
) )
305, 29mtod 170 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  -.  om  C_  A
)
31 ordom 4813 . . . . . . . . 9  |-  Ord  om
32 ordtri1 4574 . . . . . . . . 9  |-  ( ( Ord  om  /\  Ord  A )  ->  ( om  C_  A  <->  -.  A  e.  om ) )
3331, 18, 32sylancr 645 . . . . . . . 8  |-  ( A  e.  On  ->  ( om  C_  A  <->  -.  A  e.  om ) )
3433con2bid 320 . . . . . . 7  |-  ( A  e.  On  ->  ( A  e.  om  <->  -.  om  C_  A
) )
3534ad2antrr 707 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  ( A  e. 
om 
<->  -.  om  C_  A
) )
3630, 35mpbird 224 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  A  e.  om )
37 simplr 732 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  B  e.  om )
3836, 37jca 519 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  ( A  e. 
om  /\  B  e.  om ) )
39 nneneq 7249 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~~  B  <->  A  =  B ) )
4039biimpa 471 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~~  B )  ->  A  =  B )
4138, 40sylancom 649 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  om )  /\  A  ~~  B )  ->  A  =  B )
4241ex 424 . 2  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  ~~  B  ->  A  =  B ) )
43 eqeng 7100 . . 3  |-  ( A  e.  On  ->  ( A  =  B  ->  A 
~~  B ) )
4443adantr 452 . 2  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  =  B  ->  A  ~~  B
) )
4542, 44impbid 184 1  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  ~~  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    C_ wss 3280   class class class wbr 4172   Ord word 4540   Oncon0 4541   suc csuc 4543   omcom 4804    ~~ cen 7065    ~<_ cdom 7066
This theorem is referenced by:  onfin  7256  ficardom  7804  finnisoeu  7950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071
  Copyright terms: Public domain W3C validator