MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssmin Unicode version

Theorem onssmin 4590
Description: A non-empty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.)
Assertion
Ref Expression
onssmin  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  C_  y
)
Distinct variable group:    x, y, A

Proof of Theorem onssmin
StepHypRef Expression
1 onint 4588 . 2  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
2 intss1 3879 . . 3  |-  ( y  e.  A  ->  |^| A  C_  y )
32rgen 2610 . 2  |-  A. y  e.  A  |^| A  C_  y
4 sseq1 3201 . . . 4  |-  ( x  =  |^| A  -> 
( x  C_  y  <->  |^| A  C_  y )
)
54ralbidv 2565 . . 3  |-  ( x  =  |^| A  -> 
( A. y  e.  A  x  C_  y  <->  A. y  e.  A  |^| A  C_  y ) )
65rspcev 2886 . 2  |-  ( (
|^| A  e.  A  /\  A. y  e.  A  |^| A  C_  y )  ->  E. x  e.  A  A. y  e.  A  x  C_  y )
71, 3, 6sylancl 643 1  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  C_  y
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   E.wrex 2546    C_ wss 3154   (/)c0 3457   |^|cint 3864   Oncon0 4394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4307  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398
  Copyright terms: Public domain W3C validator