MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsuci Unicode version

Theorem onsuci 4628
Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1  |-  A  e.  On
Assertion
Ref Expression
onsuci  |-  suc  A  e.  On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2  |-  A  e.  On
2 suceloni 4603 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
31, 2ax-mp 10 1  |-  suc  A  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 1685   Oncon0 4391   suc csuc 4393
This theorem is referenced by:  1on  6481  2on  6482  3on  6484  4on  6485  tz9.12lem2  7455  tz9.12  7457  rankpwi  7490  bndrank  7508  rankval4  7534  rankxplim3  7546  cfcof  7895  ttukeylem6  8136  onsucconi  24283  onsucsuccmpi  24289
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-tr 4115  df-eprel 4304  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-suc 4397
  Copyright terms: Public domain W3C validator