MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsuci Unicode version

Theorem onsuci 4781
Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1  |-  A  e.  On
Assertion
Ref Expression
onsuci  |-  suc  A  e.  On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2  |-  A  e.  On
2 suceloni 4756 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
31, 2ax-mp 8 1  |-  suc  A  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 1721   Oncon0 4545   suc csuc 4547
This theorem is referenced by:  1on  6694  2on  6695  3on  6697  4on  6698  tz9.12lem2  7674  tz9.12  7676  rankpwi  7709  bndrank  7727  rankval4  7753  rankxplim3  7765  cfcof  8114  ttukeylem6  8354  onsucconi  26095  onsucsuccmpi  26101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-tr 4267  df-eprel 4458  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-suc 4551
  Copyright terms: Public domain W3C validator