Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucssi Unicode version

Theorem onsucssi 4569
 Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onssi.1
onsucssi.2
Assertion
Ref Expression
onsucssi

Proof of Theorem onsucssi
StepHypRef Expression
1 onssi.1 . 2
2 onsucssi.2 . . 3
32onordi 4434 . 2
4 ordelsuc 4548 . 2
51, 3, 4mp2an 656 1
 Colors of variables: wff set class Syntax hints:   wb 178   wcel 1621   wss 3094   word 4328  con0 4329   csuc 4331 This theorem is referenced by:  omopthlem1  6586  rankval4  7472  rankc1  7475  rankc2  7476  rankxplim  7482  rankxplim3  7484  onsucsuccmpi  24222 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-suc 4335
 Copyright terms: Public domain W3C validator