MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni Unicode version

Theorem onsucuni 4621
Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.)
Assertion
Ref Expression
onsucuni  |-  ( A 
C_  On  ->  A  C_  suc  U. A )

Proof of Theorem onsucuni
StepHypRef Expression
1 ssorduni 4579 . 2  |-  ( A 
C_  On  ->  Ord  U. A )
2 ssid 3199 . . 3  |-  U. A  C_ 
U. A
3 ordunisssuc 4497 . . 3  |-  ( ( A  C_  On  /\  Ord  U. A )  ->  ( U. A  C_  U. A  <->  A 
C_  suc  U. A ) )
42, 3mpbii 202 . 2  |-  ( ( A  C_  On  /\  Ord  U. A )  ->  A  C_ 
suc  U. A )
51, 4mpdan 649 1  |-  ( A 
C_  On  ->  A  C_  suc  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    C_ wss 3154   U.cuni 3829   Ord word 4393   Oncon0 4394   suc csuc 4396
This theorem is referenced by:  ordsucuni  4622  tz9.12lem3  7463  onssnum  7669  dfac12lem2  7772  ackbij1lem16  7863  cfslb2n  7896  hsmexlem1  8054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4307  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-suc 4400
  Copyright terms: Public domain W3C validator