MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni Unicode version

Theorem onsucuni 4741
Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.)
Assertion
Ref Expression
onsucuni  |-  ( A 
C_  On  ->  A  C_  suc  U. A )

Proof of Theorem onsucuni
StepHypRef Expression
1 ssorduni 4699 . 2  |-  ( A 
C_  On  ->  Ord  U. A )
2 ssid 3303 . . 3  |-  U. A  C_ 
U. A
3 ordunisssuc 4617 . . 3  |-  ( ( A  C_  On  /\  Ord  U. A )  ->  ( U. A  C_  U. A  <->  A 
C_  suc  U. A ) )
42, 3mpbii 203 . 2  |-  ( ( A  C_  On  /\  Ord  U. A )  ->  A  C_ 
suc  U. A )
51, 4mpdan 650 1  |-  ( A 
C_  On  ->  A  C_  suc  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    C_ wss 3256   U.cuni 3950   Ord word 4514   Oncon0 4515   suc csuc 4517
This theorem is referenced by:  ordsucuni  4742  tz9.12lem3  7641  onssnum  7847  dfac12lem2  7950  ackbij1lem16  8041  cfslb2n  8074  hsmexlem1  8232
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-tr 4237  df-eprel 4428  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-suc 4521
  Copyright terms: Public domain W3C validator