MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni Unicode version

Theorem onsucuni 4510
Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.)
Assertion
Ref Expression
onsucuni  |-  ( A 
C_  On  ->  A  C_  suc  U. A )

Proof of Theorem onsucuni
StepHypRef Expression
1 ssorduni 4468 . 2  |-  ( A 
C_  On  ->  Ord  U. A )
2 ssid 3118 . . 3  |-  U. A  C_ 
U. A
3 ordunisssuc 4386 . . 3  |-  ( ( A  C_  On  /\  Ord  U. A )  ->  ( U. A  C_  U. A  <->  A 
C_  suc  U. A ) )
42, 3mpbii 204 . 2  |-  ( ( A  C_  On  /\  Ord  U. A )  ->  A  C_ 
suc  U. A )
51, 4mpdan 652 1  |-  ( A 
C_  On  ->  A  C_  suc  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    C_ wss 3078   U.cuni 3727   Ord word 4284   Oncon0 4285   suc csuc 4287
This theorem is referenced by:  ordsucuni  4511  tz9.12lem3  7345  onssnum  7551  dfac12lem2  7654  ackbij1lem16  7745  cfslb2n  7778  hsmexlem1  7936
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-suc 4291
  Copyright terms: Public domain W3C validator