Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontopbas Unicode version

Theorem ontopbas 24207
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
Assertion
Ref Expression
ontopbas  |-  ( B  e.  On  ->  B  e. 
TopBases )

Proof of Theorem ontopbas
StepHypRef Expression
1 onelon 4354 . . . . . . . 8  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
2 onelon 4354 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  B )  ->  y  e.  On )
31, 2anim12dan 813 . . . . . . 7  |-  ( ( B  e.  On  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  e.  On  /\  y  e.  On )
)
43ex 425 . . . . . 6  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  e.  On  /\  y  e.  On ) ) )
5 onin 4360 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  i^i  y
)  e.  On )
64, 5syl6 31 . . . . 5  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  i^i  y )  e.  On ) )
76anc2ri 543 . . . 4  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( (
x  i^i  y )  e.  On  /\  B  e.  On ) ) )
8 inss1 3331 . . . . . . 7  |-  ( x  i^i  y )  C_  x
98jctl 527 . . . . . 6  |-  ( x  e.  B  ->  (
( x  i^i  y
)  C_  x  /\  x  e.  B )
)
109adantr 453 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  i^i  y )  C_  x  /\  x  e.  B
) )
1110a1i 12 . . . 4  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( (
x  i^i  y )  C_  x  /\  x  e.  B ) ) )
12 ontr2 4376 . . . 4  |-  ( ( ( x  i^i  y
)  e.  On  /\  B  e.  On )  ->  ( ( ( x  i^i  y )  C_  x  /\  x  e.  B
)  ->  ( x  i^i  y )  e.  B
) )
137, 11, 12syl6c 62 . . 3  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  i^i  y )  e.  B
) )
1413ralrimivv 2605 . 2  |-  ( B  e.  On  ->  A. x  e.  B  A. y  e.  B  ( x  i^i  y )  e.  B
)
15 fiinbas 16617 . 2  |-  ( ( B  e.  On  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
1614, 15mpdan 652 1  |-  ( B  e.  On  ->  B  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   A.wral 2516    i^i cin 3093    C_ wss 3094   Oncon0 4329   TopBasesctb 16562
This theorem is referenced by:  onsstopbas  24208  onsuctop  24212
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-bases 16565
  Copyright terms: Public domain W3C validator