MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr1 Structured version   Unicode version

Theorem ontr1 4619
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
ontr1  |-  ( C  e.  On  ->  (
( A  e.  B  /\  B  e.  C
)  ->  A  e.  C ) )

Proof of Theorem ontr1
StepHypRef Expression
1 eloni 4583 . 2  |-  ( C  e.  On  ->  Ord  C )
2 ordtr1 4616 . 2  |-  ( Ord 
C  ->  ( ( A  e.  B  /\  B  e.  C )  ->  A  e.  C ) )
31, 2syl 16 1  |-  ( C  e.  On  ->  (
( A  e.  B  /\  B  e.  C
)  ->  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   Ord word 4572   Oncon0 4573
This theorem is referenced by:  smoiun  6615  dif20el  6741  oeordi  6822  omabs  6882  omsmolem  6888  cofsmo  8139  cfsmolem  8140  inar1  8640  grur1a  8684
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950  df-in 3319  df-ss 3326  df-uni 4008  df-tr 4295  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577
  Copyright terms: Public domain W3C validator