MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid Unicode version

Theorem opabid 4164
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
opabid  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )

Proof of Theorem opabid
StepHypRef Expression
1 opex 4130 . 2  |-  <. x ,  y >.  e.  _V
2 copsexg 4145 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ph  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) ) )
32bicomd 194 . 2  |-  ( z  =  <. x ,  y
>.  ->  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  ph ) )
4 df-opab 3975 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
51, 3, 4elab2 2854 1  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   <.cop 3547   {copab 3973
This theorem is referenced by:  opelopabsb  4168  ssopab2b  4184  dmopab  4796  rnopab  4831  funopab  5145  f1ompt  5534  zfrep6  5600  ovid  5816  fvopab5  6173  opabiota  6177  enssdom  6772  omxpenlem  6848  infxpenlem  7525  canthwelem  8152  pospo  13951  2ndcdisj  17014  lgsquadlem1  20425  lgsquadlem2  20426  h2hlm  21390  bosser  25333  diclspsn  30143
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-opab 3975
  Copyright terms: Public domain W3C validator