MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopaba Unicode version

Theorem opelopaba 4363
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopaba.1  |-  A  e. 
_V
opelopaba.2  |-  B  e. 
_V
opelopaba.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopaba  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Distinct variable groups:    x, y, A    x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opelopaba
StepHypRef Expression
1 opelopaba.1 . 2  |-  A  e. 
_V
2 opelopaba.2 . 2  |-  B  e. 
_V
3 opelopaba.3 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
43opelopabga 4360 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ps ) )
51, 2, 4mp2an 653 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864   <.cop 3719   {copab 4157
This theorem is referenced by:  canthwelem  8362  canthwe  8363  bcthlem1  18850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-opab 4159
  Copyright terms: Public domain W3C validator