Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabf Unicode version

Theorem opelopabf 4471
 Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4468 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x
opelopabf.y
opelopabf.1
opelopabf.2
opelopabf.3
opelopabf.4
Assertion
Ref Expression
opelopabf
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 4457 . 2
2 opelopabf.1 . . 3
3 nfcv 2571 . . . . 5
4 opelopabf.x . . . . 5
53, 4nfsbc 3174 . . . 4
6 opelopabf.3 . . . . 5
76sbcbidv 3207 . . . 4
85, 7sbciegf 3184 . . 3
92, 8ax-mp 8 . 2
10 opelopabf.2 . . 3
11 opelopabf.y . . . 4
12 opelopabf.4 . . . 4
1311, 12sbciegf 3184 . . 3
1410, 13ax-mp 8 . 2
151, 9, 143bitri 263 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wnf 1553   wceq 1652   wcel 1725  cvv 2948  wsbc 3153  cop 3809  copab 4257 This theorem is referenced by:  pofun  4511  fmptco  5892  fmptcof2  24064 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-opab 4259
 Copyright terms: Public domain W3C validator