MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabg Structured version   Unicode version

Theorem opelopabg 4465
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopabg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
opelopabg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
Distinct variable groups:    x, y, A    x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    V( x, y)    W( x, y)

Proof of Theorem opelopabg
StepHypRef Expression
1 opelopabg.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 opelopabg.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
31, 2sylan9bb 681 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ch )
)
43opelopabga 4460 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809   {copab 4257
This theorem is referenced by:  opelopab  4468  fvopab3g  5794  fvopab3ig  5795  ov  6185  ovg  6204  eltopspOLD  16975  istpsOLD  16977  iscom2  21992  isdivrngo  22011  isvclem  22048  adj1  23428  adjeq  23430  linedegen  26069  opelopab3  26409  dihpN  32071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-opab 4259
  Copyright terms: Public domain W3C validator