MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabga Unicode version

Theorem opelopabga 4250
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopabga  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ps ) )
Distinct variable groups:    x, y, A    x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem opelopabga
StepHypRef Expression
1 elopab 4244 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) )
2 opelopabga.1 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
32copsex2g 4226 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
41, 3syl5bb 250 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   <.cop 3617   {copab 4050
This theorem is referenced by:  brabga  4251  opelopab2a  4252  opelopaba  4253  opelopabg  4255  canthwelem  8240  isrngo  21005
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-opab 4052
  Copyright terms: Public domain W3C validator