MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelres Unicode version

Theorem opelres 4960
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1  |-  B  e. 
_V
Assertion
Ref Expression
opelres  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )

Proof of Theorem opelres
StepHypRef Expression
1 df-res 4701 . . 3  |-  ( C  |`  D )  =  ( C  i^i  ( D  X.  _V ) )
21eleq2i 2347 . 2  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) ) )
3 elin 3358 . 2  |-  ( <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V )
) )
4 opelres.1 . . . 4  |-  B  e. 
_V
5 opelxp 4719 . . . 4  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  ( A  e.  D  /\  B  e.  _V ) )
64, 5mpbiran2 885 . . 3  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  A  e.  D )
76anbi2i 675 . 2  |-  ( (
<. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
82, 3, 73bitri 262 1  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1684   _Vcvv 2788    i^i cin 3151   <.cop 3643    X. cxp 4687    |` cres 4691
This theorem is referenced by:  brres  4961  opelresg  4962  opres  4964  dmres  4976  elres  4990  relssres  4992  resiexg  4997  iss  4998  asymref  5059  ssrnres  5116  cnvresima  5162  ressn  5211  funssres  5294  fcnvres  5418  dprd2dlem1  15276  dprd2da  15277  hausdiag  17339  hauseqlcld  17340  ovoliunlem1  18861  h2hlm  21560  relexpindlem  24036  restidsing  25076  cnvresimaOLD  26226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-res 4701
  Copyright terms: Public domain W3C validator