MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnz Unicode version

Theorem opnz 4241
Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opnz  |-  ( <. A ,  B >.  =/=  (/) 
<->  ( A  e.  _V  /\  B  e.  _V )
)

Proof of Theorem opnz
StepHypRef Expression
1 opprc 3818 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
21necon1ai 2489 . 2  |-  ( <. A ,  B >.  =/=  (/)  ->  ( A  e. 
_V  /\  B  e.  _V ) )
3 dfopg 3795 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
4 snex 4215 . . . . 5  |-  { A }  e.  _V
54prnz 3746 . . . 4  |-  { { A } ,  { A ,  B } }  =/=  (/)
65a1i 10 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { { A } ,  { A ,  B } }  =/=  (/) )
73, 6eqnetrd 2465 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =/=  (/) )
82, 7impbii 180 1  |-  ( <. A ,  B >.  =/=  (/) 
<->  ( A  e.  _V  /\  B  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1685    =/= wne 2447   _Vcvv 2789   (/)c0 3456   {csn 3641   {cpr 3642   <.cop 3644
This theorem is referenced by:  opnzi  4242  opeqex  4256  opelopabsb  4274
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650
  Copyright terms: Public domain W3C validator