MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth Unicode version

Theorem opth 4244
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opth  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . . 4  |-  A  e. 
_V
2 opth1.2 . . . 4  |-  B  e. 
_V
31, 2opth1 4243 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )
41, 2opi1 4239 . . . . . . 7  |-  { A }  e.  <. A ,  B >.
5 id 19 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  D >. )
64, 5syl5eleq 2370 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  <. C ,  D >. )
7 oprcl 3821 . . . . . 6  |-  ( { A }  e.  <. C ,  D >.  ->  ( C  e.  _V  /\  D  e.  _V ) )
86, 7syl 15 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( C  e.  _V  /\  D  e.  _V )
)
98simprd 449 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  D  e.  _V )
103opeq1d 3803 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  B >. )
1110, 5eqtr3d 2318 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  = 
<. C ,  D >. )
128simpld 445 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  _V )
13 dfopg 3795 . . . . . . . 8  |-  ( ( C  e.  _V  /\  B  e.  _V )  -> 
<. C ,  B >.  =  { { C } ,  { C ,  B } } )
1412, 2, 13sylancl 643 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  =  { { C } ,  { C ,  B } } )
1511, 14eqtr3d 2318 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  B } } )
16 dfopg 3795 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  =  { { C } ,  { C ,  D } } )
178, 16syl 15 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  D } } )
1815, 17eqtr3d 2318 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } } )
19 prex 4216 . . . . . 6  |-  { C ,  B }  e.  _V
20 prex 4216 . . . . . 6  |-  { C ,  D }  e.  _V
2119, 20preqr2 3788 . . . . 5  |-  ( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D } )
2218, 21syl 15 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  =  { C ,  D } )
23 preq2 3708 . . . . . . 7  |-  ( x  =  D  ->  { C ,  x }  =  { C ,  D }
)
2423eqeq2d 2295 . . . . . 6  |-  ( x  =  D  ->  ( { C ,  B }  =  { C ,  x } 
<->  { C ,  B }  =  { C ,  D } ) )
25 eqeq2 2293 . . . . . 6  |-  ( x  =  D  ->  ( B  =  x  <->  B  =  D ) )
2624, 25imbi12d 311 . . . . 5  |-  ( x  =  D  ->  (
( { C ,  B }  =  { C ,  x }  ->  B  =  x )  <-> 
( { C ,  B }  =  { C ,  D }  ->  B  =  D ) ) )
27 vex 2792 . . . . . 6  |-  x  e. 
_V
282, 27preqr2 3788 . . . . 5  |-  ( { C ,  B }  =  { C ,  x }  ->  B  =  x )
2926, 28vtoclg 2844 . . . 4  |-  ( D  e.  _V  ->  ( { C ,  B }  =  { C ,  D }  ->  B  =  D ) )
309, 22, 29sylc 56 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  B  =  D )
313, 30jca 518 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( A  =  C  /\  B  =  D ) )
32 opeq12 3799 . 2  |-  ( ( A  =  C  /\  B  =  D )  -> 
<. A ,  B >.  = 
<. C ,  D >. )
3331, 32impbii 180 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   _Vcvv 2789   {csn 3641   {cpr 3642   <.cop 3644
This theorem is referenced by:  opthg  4245  otth2  4248  copsexg  4251  copsex4g  4254  opcom  4259  moop2  4260  opelopabsbOLD  4272  ralxpf  4829  cnvcnvsn  5148  funopg  5252  xpopth  6123  eqop  6124  soxp  6190  fnwelem  6192  opiota  6284  xpdom2  6953  xpf1o  7019  unxpdomlem2  7064  unxpdomlem3  7065  xpwdomg  7295  fseqenlem1  7647  iundom2g  8158  eqresr  8755  cnref1o  10345  hashfun  11385  fsumcom2  12233  xpnnenOLD  12484  qredeu  12782  qnumdenbi  12811  crt  12842  prmreclem3  12961  imasaddfnlem  13426  dprd2da  15273  dprd2d2  15275  erdszelem9  23137  brtp  23512  br8  23519  br6  23520  br4  23521  brsegle  24141  elo  24451  cbcpcp  24573  f1opr  25802  pellexlem3  26327  pellex  26331  opelopab4  27600  dib1dim  30634  diclspsn  30663  dihopelvalcpre  30717  dihmeetlem4preN  30775  dihmeetlem13N  30788  dih1dimatlem  30798  dihatlat  30803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650
  Copyright terms: Public domain W3C validator