MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Unicode version

Theorem opth2 4247
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1  |-  C  e. 
_V
opth2.2  |-  D  e. 
_V
Assertion
Ref Expression
opth2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2  |-  C  e. 
_V
2 opth2.2 . 2  |-  D  e. 
_V
3 opthg2 4246 . 2  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
41, 2, 3mp2an 653 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   _Vcvv 2789   <.cop 3644
This theorem is referenced by:  eqvinop  4250  opelxp  4718  fsn  5658  opiota  6284  canthwe  8269  ltresr  8758  diblsmopel  30640  cdlemn7  30672  dihordlem7  30683  xihopellsmN  30723  dihopellsm  30724  dihpN  30805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650
  Copyright terms: Public domain W3C validator