Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthg Structured version   Unicode version

Theorem opthg 4428
 Description: Ordered pair theorem. and are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg

Proof of Theorem opthg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3976 . . . 4
21eqeq1d 2443 . . 3
3 eqeq1 2441 . . . 4
43anbi1d 686 . . 3
52, 4bibi12d 313 . 2
6 opeq2 3977 . . . 4
76eqeq1d 2443 . . 3
8 eqeq1 2441 . . . 4
98anbi2d 685 . . 3
107, 9bibi12d 313 . 2
11 vex 2951 . . 3
12 vex 2951 . . 3
1311, 12opth 4427 . 2
145, 10, 13vtocl2g 3007 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  cop 3809 This theorem is referenced by:  opthg2  4429  oteqex  4441  s111  11752  frgpnabllem1  15474  frgpnabllem2  15475  otthg  28018  el2wlkonotot0  28256  dvheveccl  31811 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815
 Copyright terms: Public domain W3C validator